Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (4): 441-449    DOI: 10.3785/j.issn.1006-754X.2018.04.011
优化设计     
考虑结构稳定性的变密度拓扑优化方法
张日成1, 赵炯1, 吴青龙1, 熊肖磊1, 周奇才1, 焦洪宇1,2
1. 同济大学 机械与能源工程学院, 上海 201804;
2. 常熟理工学院 汽车工程学院, 江苏 苏州 215500
Variable density topology optimization method considering structural stability
ZHANG Ri-cheng1, ZHAO Jiong1, WU Qing-long1, XIONG Xiao-lei1, ZHOU Qi-cai1, JIAO Hong-yu1,2
1. School of Mechanical Engineering, Tongji University, Shanghai, 201804, China;
2. School of Automotive Engineering, Changshu Institute of Technology, Suzhou 215500, China
 全文: PDF(3548 KB)   HTML
摘要:

将稳定性问题引入传统变密度法中,可实现包含稳定性约束的平面模型结构拓扑优化。以单元相对密度为设计变量,结构柔度最小为目标函数,结构体积和失稳载荷因子为约束条件建立优化问题数学模型,提出了一种考虑结构稳定性的变密度拓扑优化方法。通过分析结构柔度、体积、失稳载荷因子对设计变量的灵敏度,并基于拉格朗日乘子法和Kuhn-Tucker条件,推导了优化问题的迭代准则。同时,利用基于约束条件的泰勒展开式求解优化准则中的拉格朗日乘子。通过推导平面四节点四边形单元几何刚度矩阵的显式表达式,得到了优化准则中的几何应变能。最后,通过算例对提出的方法进行了验证,并与不考虑稳定性的传统变密度拓扑优化方法进行对比,结果表明该方法能显著提高拓扑优化结果的稳定性。研究结果对细长受压结构的优化设计有重要指导意义,对结构的稳定性设计有一定参考价值。

关键词: 稳定性拓扑优化变密度法几何刚度灵敏度    
Abstract:

To achieve the topology optimization of plane model with stability constraints, the stability problem is introduced into the traditional variable density method. The mathematical model of optimization problem was established by using the relative density of element as design variable, structural volume and instability load factor as constraints and structural flexibility as objective, and a variable density topology optimization method considering structural stability was proposed. Based on the sensitivity analysis of the flexibility, volume and instability load factor to design variables, the optimization criteria were derived according to the Lagrange multiplier method and Kuhn-Tucker condition. At the same time, the Lagrange multiplier of the criteria was solved through Taylor expansion of the constraints. The geometric stiffness matrix of the plane four-node quadrilateral element was deduced to calculate the geometry strain energy of the optimization criteria. Finally, the proposed method was verified by an example. Through the comparison with the traditional variable density method, it was illustrated that the proposed method could notably improve the stability of the optimization result. The research results have important guiding significance for the optimal design of the slender compression structure, and have certain reference value for the stability design of the structure.

Key words: stability    topology optimization    variable density method    geometric stiffness    sensitivity
收稿日期: 2017-11-30 出版日期: 2018-08-28
CLC:  TH11  
基金资助:

国家自然科学基金面上项目(51375345);国家自然科学基金青年科学基金资助项目(51605046)

通讯作者: 赵炯(1963-),男,高级工程师,博士生导师,博士,从事通信控制与嵌入式系统等研究,E-mail:jiong.zhao@tongji.edu.cn     E-mail: jiong.zhao@tongji.edu.cn
作者简介: 张日成(1994-),男,浙江台州人,硕士生,从事结构设计与优化研究,E-mail:673935130@qq.com,https://orcid.org/0000-0001-7281-3973
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张日成
赵炯
吴青龙
熊肖磊
周奇才
焦洪宇

引用本文:

张日成, 赵炯, 吴青龙, 熊肖磊, 周奇才, 焦洪宇. 考虑结构稳定性的变密度拓扑优化方法[J]. 工程设计学报, 2018, 25(4): 441-449.

ZHANG Ri-cheng, ZHAO Jiong, WU Qing-long, XIONG Xiao-lei, ZHOU Qi-cai, JIAO Hong-yu. Variable density topology optimization method considering structural stability[J]. Chinese Journal of Engineering Design, 2018, 25(4): 441-449.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.04.011        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I4/441

[1] 焦洪宇,周奇才,李文军,等.基于变密度法的周期性拓扑优化[J].机械工程学报,2013,49(13):132-138. JIAO Hong-yu, ZHOU Qi-cai, LI Wen-jun, et al. Periodic topology optimization using variable density method[J]. Journal of Mechanical Engineering, 2013, 49(13):132-138.
[2] BROWNE P A, BUDD C, GOULD N, et al. A fast method for binary programming using first-order derivatives, with application to topology optimization with buckling constraints[J]. International Journal for Numerical Methods in Engineering, 2012, 92(12):1026-1043.
[3] ZHOU M. Topology optimization for shell structures with linear buckling responses[C]//World Congress on Computational Mechanics in Conjunction with the Second Asian-Pacific Congress on Computational Mechanics, Beijing, Sept.5-10, 2004.
[4] 隋允康,边炳传.屈曲与应力约束下连续体结构的拓扑优化[J].工程力学,2008,25(8):6-12. SUI Yun-kang, BIAN Bing-chuan. Topology optimization of continuum structures under buckling and stress constraints[J]. Engineering Mechanics, 2008, 25(8):6-12.
[5] 隋允康,边炳传,叶红玲.连续体结构屈曲约束的ICM方法拓扑优化[J].计算力学学报,2008,25(3):345-351. SUI Yun-kang, BIAN Bing-chuan, YE Hong-ling. Topological optimization of the continuum structure subjected to the buckling constraints with ICM method[J]. Chinese Journal of Computational Mechanics, 2008, 25(3):345-351.
[6] GUO X, CHENG G, YAMAZAKI K. A new approach for the solution of singular optima in truss topology optimization with stress and local buckling constraints[J]. Structure Multidiscipline Optimization, 2001, 22(5):364-372.
[7] LUND E. Buckling topology optimization of laminated multi-material composite shell structures[J]. Composite Structures, 2009, 91(2):158-167.
[8] 程耿东,郭旭.考虑局部稳定性约束的桁架拓扑优化设计[J].大连理工大学学报,1995,35(6):770-775. CHENG Geng-dong, GUO Xu. Inverstigation of truss topology optimization under local buckling constraints[J]. Journal of Dalian University of Technology, 1995, 35(6):770-775
[9] 高兴军.稳定性约束下连续体结构两尺度拓扑优化[D].广州:华南理工大学工木与交通学院,2015:46-47. GAO Xing-jun. Two-scale topology optimization of continuum structures under buckling constraints[D]. Guangzhou:South China University of Technology, School of CML Engineering and Transportation, 2015:46-47.
[10] NEVES M M, RODRIGUES H, GUEDES J M. Generalized topology design of structures with a buckling load criterion[J]. Structural Optimization, 1995, 10(2):71-78.
[11] NEVES M M, SIGMUND O, BENDSØE M P. Topology optimization of periodic microstructures with a penalization of highly localized buckling modes[J]. International Journal for Numerical Methods in Engineering, 2002, 54(6):809-834.
[12] SIGMUND O, BENDSOE M P. Material interpolations schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9/10):635-654.
[13] MARTINEZ J M. A note on the theoretical convergence properties of the SIMP method[J]. Structural & Multidisciplinary Optimization, 2005, 29(4):319-323.
[14] 王勖成.有限单元法[M].北京:清华大学出版社,2003:30-50. WANG Xu-cheng. Finite element method[M]. Beijing:Tsinghua University Press, 2003:30-50.
[15] CLOUGH R W. Dynamics of structures[M]. New York:McGraw-Hill, 1993:366.
[16] EDWARD L. Wilson. Three-dimensional static and dynamic analysis of structures[M]. Berkley:Computer & Structures, Inc., 1996:9-11.
[1] 张小强,鲁碧为,刘家琴,吴玉程. 聚变堆偏滤器拓扑优化设计与稳态热分析[J]. 工程设计学报, 2023, 30(5): 601-607.
[2] 况雨春,钟辉,钟良春. 类圆弧线型螺杆马达的设计与研究[J]. 工程设计学报, 2023, 30(5): 640-649.
[3] 杨展,李其朋,唐威,秦可成,陈岁繁,王铠迪,刘阳,邹俊. 小型陆空变形两栖机器人的设计与分析[J]. 工程设计学报, 2023, 30(3): 325-333.
[4] 郑小飞,黄镇海,马小龙,王建新,王斌锐. 基于SIMP方法的爬杆机器人结构优化与分析[J]. 工程设计学报, 2023, 30(3): 342-352.
[5] 王晨,高波,杨旭. Stewart式六维力传感器轻量化设计[J]. 工程设计学报, 2022, 29(4): 419-429.
[6] 王景良,朱天成,朱龙彪,许飞云. 连续体结构的变密度拓扑优化方法研究[J]. 工程设计学报, 2022, 29(3): 279-285.
[7] 陶晓东, 郭安福, 李辉, 韩伟, 李万才, 李涛. 基于灵敏度分析的盘式开沟机性能分析及优化[J]. 工程设计学报, 2022, 29(1): 59-65.
[8] 曾光, 边强, 赵春江, 殷玉枫, 冯毅杰. 变参数下角接触球轴承保持架的稳定性与振动特性分析[J]. 工程设计学报, 2020, 27(6): 735-743.
[9] 刘若晨, 徐成, 王奎洋, 王益民, 孙见忠. 新型磨损区域静电传感器特性参数研究[J]. 工程设计学报, 2020, 27(5): 645-653.
[10] 张鹄志, 马哲霖, 黄海林, 金浩, 彭玮. 不同位移边界条件下钢筋混凝土深梁拓扑优化[J]. 工程设计学报, 2019, 26(6): 691-699.
[11] 黄泽好, 张振华, 黄旭, 雷伟. 鼓式制动器制动不稳定时变特性分析[J]. 工程设计学报, 2019, 26(6): 714-721.
[12] 杨少沛, 李蒙, 王得胜. 基于15F2K60S2的农用无人机电源监控仪表设计[J]. 工程设计学报, 2019, 26(3): 330-337.
[13] 崔国华, 崔康康, 吴海淼, 张艳伟, 刘健. 预应力钢筒混凝土管端口打磨机器人的压紧力可靠性分析[J]. 工程设计学报, 2018, 25(6): 647-654.
[14] 唐林, 许志沛, 贺田龙, 敖维川. 基于BP神经网络的转动架稳定性灵敏度分析[J]. 工程设计学报, 2018, 25(5): 576-582.
[15] 杜义贤, 李荣, 徐明, 田启华, 周祥曼. 负泊松比微结构拓扑优化设计[J]. 工程设计学报, 2018, 25(4): 450-456.