Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (4): 419-429    DOI: 10.3785/j.issn.1006-754X.2022.00.058
优化设计     
Stewart式六维力传感器轻量化设计
王晨1(),高波2(),杨旭3
1.陕西工业职业技术学院 航空工程学院,陕西 咸阳 712000
2.中国航天科技集团公司 陕西电器研究所,陕西 西安 710065
3.北京空间飞行器总体设计部,北京 100094
Lightweight design of Stewart type six-axis force sensor
Chen WANG1(),Bo GAO2(),Xu YANG3
1.Department of Aeronautical Engineering, Shaanxi Polytechnic Institute, Xianyang 712000, China
2.Shaanxi Electric Appliance Research Institute, China Aerospace Science and Technology Corporation, Xi'an 710065, China
3.Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
 全文: PDF(4136 KB)   HTML
摘要:

空间复合力测量是空间感知技术的重要发展方向之一。六维力传感器作为主要的空间复合力测量装置,被广泛应用于火箭发动机推力测试、航天器对接等领域。目前,轻量化已成为六维力传感器的主要研究方向之一,但由于其设计指标多且各项指标间存在相互制约,故采用理论推导、数值仿真及实验验证相结合的方法进行研究。首先,利用螺旋理论建立Stewart式六维力传感器在理想条件下的力映射模型,通过求解综合性能目标函数来确定其各向同性度理论最优时的结构参数。然后,利用ABAQUS有限元分析软件构建Stewart式六维力传感器仿真模型,并对其初始样机的质量、刚度、强度和灵敏度进行了详细分析;在此基础上,分析了上、下加载盘主要结构参数对传感器质量、刚度和强度的影响,进而对加载盘结构参数进行了优化并设计了一种具有正四面体特征的半球形减重结构,实现了传感器的轻量化设计。最后,对优化后Stewart式六维力传感器的性能进行了仿真分析和实验验证。结果表明,基于多目标参数优化结合数值仿真、实验验证可有效提高设计效率和降低设计成本;所设计的减重结构可有效改善Stewart式六维力传感器的质量分布和提高其质量利用率,优化后传感器的质量减小了17.65%且综合性能优异。研究结果可为六维力传感器的轻量化设计和综合性能优化提供参考。

关键词: 六维力传感器数值仿真质量刚度灵敏度精度    
Abstract:

Spatial composite force measurement is one of the important development directions of spatial sensing technology. As a main spatial composite force measuring device, the six-axis force sensor is widely used in rocket engine thrust test, spacecraft docking and other fields. At present, lightweight has become one of the main research directions of six-axis force sensors. However, due to the large number of design indicators and mutual constraints among various indicators, the method of theoretical derivation, numerical simulation and experimental verification was adopted in the research. Firstly, the force mapping model of Stewart type six-axis force sensor under ideal conditions was established based on the spiral theory, and the structural parameters when the theoretical isotropy was optimal were determined by solving the comprehensive performance objective function. Then, the simulation model of Stewart type six-axis force sensor was built by using the ABAQUS finite element analysis software, and the mass, stiffness, strength and sensitivity of its initial prototype were analyzed in detail. On this basis, the influence of the main structural parameters of upper and lower loading plates on the mass, stiffness and strength of sensor was analyzed, the structural parameters of upper and lower loading plates were optimized, and a hemispherical weight reduction structure with regular tetrahedron characteristics was designed, which realized the lightweight design of sensor. Finally, the performance of optimized Stewart type six-axis force sensor was simulated and verified by experiments. The results showed that multi-objective parameter optimization combined with numerical simulation and experimental verification could effectively improve design efficiency and reduce design cost; the designed weight reduction structure could effectively improve the mass distribution of Stewart type six-axis force sensor and improve its mass utilization. After optimization, the mass of the sensor was reduced by 17.65% and its comprehensive performance was excellent. The research results can provide reference for lightweight design and comprehensive performance optimization of six-axis force sensors.

Key words: six-axis force sensor    numerical simulation    quality    stiffness    sensitivity    accuracy
收稿日期: 2021-11-19 出版日期: 2022-09-05
CLC:  TH 122  
基金资助: 国家自然科学基金重点项目(51927809);陕西省科技统筹创新工程计划资助项目(604287478005);陕西工业职业技术学院校级项目(2022YKYB-034)
通讯作者: 高波     E-mail: 1064336813@qq.com;gaobo8868@163.com
作者简介: 王 晨(1988—),男,陕西咸阳人,讲师,硕士,从事传感器设计与研发、结构优化研究,E-mail:1064336813@qq.comhttps://orcid.org/0000-0002-1332-9185
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王晨
高波
杨旭

引用本文:

王晨,高波,杨旭. Stewart式六维力传感器轻量化设计[J]. 工程设计学报, 2022, 29(4): 419-429.

Chen WANG,Bo GAO,Xu YANG. Lightweight design of Stewart type six-axis force sensor[J]. Chinese Journal of Engineering Design, 2022, 29(4): 419-429.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.058        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I4/419

图1  Stewart式六维力传感器结构简图
结构参数数值
R1/mm143
R2/mm118
φ1/(°)98
φ2/(°)31
Hc/mm86
表1  Stewart式六维力传感器各向同性度理论最优时的结构参数
各向同性度数值
η10.362 1
η10.784 5
η30.388 4
η40.744 2
表2  Stewart式六维力传感器的理论最优各向同性度
量程数值
FFx、Fy、Fz )/N1 500
MMx、My、Mz )/Nm2 000
表3  Stewart式六维力传感器量程
图2  Stewart式六维力传感器初始样机
图3  Stewart式六维力传感器有限元模型的网格密度影响无关性分析结果
图4  Stewart式六维力传感器有限元模型

荷载

F/N,M/Nm

σmax/MPaεmax/10-6σeav/MPaKF /(N/m), KM /(Nm/rad)T/(mV/V)
设计值仿真值测试值仿真值测试值
Fx=1 50031.3913817.850.40×1080.809 1×1080.783 2×1080.240.25
Fy=1 50045.2818718.790.40×1080.821 7×1080.795 9×1080.250.26
Fz =1 50023.7711215.830.40×1081.533 0×1081.399 0×1080.190.17
Mx=2 000282.89916178.570.50×1061.557 0×1061.269 0×1061.181.41
My=2 000417.791 124216.110.50×1061.299 0×1061.093 0×1061.431.71
Mz=2 000293.57897173.240.50×1062.451 0×1062.195 0×1061.121.29
表4  Stewart式六维力传感器初始样机的性能对比
组件材料质量/kg占比/%
上加载盘7A042.33636.29
下加载盘7A042.65541.25
铰座TB90.78012.12
弹性体TB90.2523.91
去耦件TB90.2183.39
标准件TB90.1963.04
表5  Stewart式六维力传感器初始样机的质量分布
图5  上加载盘半剖视图
图6  下加载盘半剖视图
图7  H1、H2对Stewart式六维力传感器最大应力的影响
图8  H1、H2对Stewart式六维力传感器拉压刚度的影响
图9  H1、H2对Stewart式六维力传感器扭转刚度的影响
图10  H1、H2对Stewart式六维力传感器质量的影响
图11  原加载盘减重结构示意
图12  半球形减重结构示意
图13  半球形减重结构位置圆定义
图14  上加载盘优化方案1
图15  上加载盘优化方案2
图16  下加载盘优化方案1
图17  下加载盘优化方案2
图18  加载盘减重结构优化设计过程
图19  优化后的加载盘端面结构示意
荷载F/N,M/Nmσmax/MPaεmax/10-6σeav/MPaKF /(N/m),KM /(Nm/rad)T/(mV/V)
Fx=1 50035.1516319.360.749 1×1080.27
Fy=1 50050.2125821.070.773 7×1080.29
Fz =1 50026.2514717.241.279 0×1080.22
Mx=2 000325.191 031202.141.369 0×1061.42
My=2 000396.211 271208.971.206 0×1061.39
Mz=2 000318.93974187.312.193 0×1061.26
表6  优化后Stewart式六维力传感器的性能
图20  优化后Stewart式六维力传感器的应力云图
图21  Stewart式六维力传感器优化样机
图22  Stewart式六维力传感器标定装置
荷载F/N,M/NmKF /(N/m),KM /(Nm/rad)T/(mV/V)
Fx=1 5000.725 7×1080.27
Fy=1 5000.751 2×1080.29
Fz =1 5001.173 0×1080.20
Mx=2 0001.115 0×1061.69
My=2 0001.024 0×1061.65
Mz=2 0001.962 0×1061.39
表7  Stewart式六维力传感器优化样机的刚度、灵敏度
1 赵现朝. Stewart结构六维力传感器设计理论与应用研究[D].秦皇岛:燕山大学,2003:9-23.
ZHAO Xian-chao. Design theory and application of the 6-axis f/t sensors based on Stewart platform structure[D]. Qinhuangdao: Yanshan University, 2003: 9-23.
2 王宣银,尹瑞多.基于Stewart机构的六维力/力矩传感器[J].机械工程学报,2008,44(12):118-122,130. doi:10.3901/jme.2008.12.118
WANG Xuan-yin, YIN Rui-duo. Six-axis force/torque sensor based on Stewart platform [J]. Journal of Mechanical Engineering, 2008, 44(12): 118-122, 130.
doi: 10.3901/jme.2008.12.118
3 姚建涛,侯雨雷,牛建业,等.大量程预紧式六维力传感器及静态标定研究[J].仪器仪表学报,2009,30(6):1233-1239. doi:10.3321/j.issn:0254-3087.2009.06.022
YAO Jian-tao, HOU Yu-lei, NIU Jian-ye, et al. Large range prestressed six-axis force sensor and study on static calibration[J]. Chinese Journal of Scientific Instrument, 2009, 30(6): 1233-1239.
doi: 10.3321/j.issn:0254-3087.2009.06.022
4 刘晓宇,盖广洪.Stewart六维力传感器解耦算法优化[J].传感技术学报,2018,31(12):1858-1861,1868. doi:10.3969/j.issn.1004-1699.2018.012.014
LIU Xiao-yu, GAI Guang-hong. Optimization of Stewart six-dimensional force sensor decoupling algorithm[J]. Chinese Journal of Sensors and Actuators, 2018, 31(12): 1858-1861, 1868.
doi: 10.3969/j.issn.1004-1699.2018.012.014
5 高波,王晨,屈文轩,等.基于局部去耦的重载Stewart 6维力传感器精度与刚度的综合优化设计[J].机器人,2017,39(6):838-843. doi:10.13973/j.cnki.robot.2017.0838
GAO Bo, WANG Chen, QU Wen-xuan, et al. The accuracy and stiffness comprehensive optimal design of the heavy load Stewart six-axis force sensor based on partial decoupling method[J]. Robot, 2017, 39(6): 838-843.
doi: 10.13973/j.cnki.robot.2017.0838
6 徐家琪,伍万能,孙炜,等.优化极限学习机算法及其在力信息解耦中的应用[J].传感技术学报,2019,32(10):1487-1492. doi:10.3969/j.issn.1004-1699.2019.10.010
XU Jia-qi, WU Wan-neng, SUN Wei, et al. Optimized extreme learning machines and their application in decoupling of multi-component force information[J]. Chinese Journal of Sensors and Actuators, 2019, 32(10): 1487-1492.
doi: 10.3969/j.issn.1004-1699.2019.10.010
7 韩康,陈立恒,李行,等.高灵敏度大量程六维力传感器设计[J].仪器仪表学报,2019,40(9):61-69. doi:10.19650/j.cnki.cjsi.J1905193
HAN Kang, CHEN Li-heng, LI Xing, et al. Design of a six-axis force sensor with large range and high sensitivity [J]. Chinese Journal of Scientific Instrument, 2019, 40(9): 61-69.
doi: 10.19650/j.cnki.cjsi.J1905193
8 陈望隆,杨述焱,胡权,等.面向运动力学测量的无线六维力传感器[J].仪器仪表学报,2019,40(4):129-136. doi:10.19650/j.cnki.cjsi.J1904623
CHEN Wang-long, YANG Shu-yan, HU Quan, et al. Wireless six-dimensional force sensor for motion mechanics measurement[J]. Chinese Journal of Scientific Instrument, 2019, 40(4): 129-136.
doi: 10.19650/j.cnki.cjsi.J1904623
9 吕帮俊,朱石坚,彭利坤,等.Stewart机构刚度映射建模与仿真[J]. 振动与冲击, 2011,30(4):178-181. doi:10.3969/j.issn.1000-3835.2011.04.037
Bang-jun LÜ, ZHU Shi-jian, PENG Li-kun, et al. Stiffness mapping modeling and simulation for Stewart mechanism [J]. Journal of Vibration and Shock, 2011, 30(4): 178-181.
doi: 10.3969/j.issn.1000-3835.2011.04.037
10 赵延治,焦雷浩,牛智,等.机械解耦自标定并联六维力传感器设计及仿真[J].中国机械工程,2017,28(7):771-778. doi:10.3969/j.issn.1004-132X.2017.07.003
ZHAO Yan-zhi, JIAO Lei-hao, NIU Zhi, et al. Design and simulation of mechanical decoupling self-calibration parallel six dimensional force sensors[J]. China Mechanical Engineering, 2017, 28(7): 771-778.
doi: 10.3969/j.issn.1004-132X.2017.07.003
11 KANG M K, LEE S, KIM J H. Shape optimization of a mechanically decoupled six-axis force/torque sensor[J].Sensors and Actuators A: Physical, 2014, 209: 41-51. doi:10.1016/j.sna.2014.01.001
doi: 10.1016/j.sna.2014.01.001
12 李立建,马爱霞,姚建涛,等.柔性并联六维力传感器力映射解析研究[J].机械工程学报,2017,53(7):30-38. doi:10.3901/jme.2017.07.030
LI Li-jian, MA Ai-xia, YAO Jian-tao, et al. Force mapping analytical research of flexure parallel six-axis force/torque sensor [J]. Journal of Mechanical Engineering, 2017, 53(7): 30-38.
doi: 10.3901/jme.2017.07.030
13 黄维,刘惟伊,刘志恩,等.基于多目标遗传算法的实验目标车底盘结构优化[J].工程设计学报,2021,28(1):80-88. doi:10.3785/j.issn.1006-754X.2021.00.012
HUANG Wei, LIU Wei-yi, LIU Zhi-en, et al. Structure optimization of experimental target vehicle chassis based on multi-objective genetic algorithm[J]. Chinese Journal of Engineering Design, 2021, 28(1): 80-88.
doi: 10.3785/j.issn.1006-754X.2021.00.012
14 张韬,杨德华,肖心怡,等.Stewart型六维力传感器的标定方法研究[J].传感技术学报,2020,33(9):1274-1278. doi:10.3969/j.issn.1004-1699.2020.09.008
ZHANG Tao, YANG De-hua, XIAO Xin-yi, et al. Research on calibration method of Stewart six-component force sensor[J]. Chinese Journal of Sensors and Actuators, 2020, 33(9): 1274-1278.
doi: 10.3969/j.issn.1004-1699.2020.09.008
15 付立悦,宋爱国.六维力传感器静态标定系统误差分析[J].计量学报,2019,40(2):295-299. doi:10.3969/j.issn.1000-1158.2019.02.20
FU Li-yue, SONG Ai-guo. Error analysis of six-axis force/torque sensor's static calibration system[J].Acta Metrologica Sinica, 2019, 40(2): 295-299.
doi: 10.3969/j.issn.1000-1158.2019.02.20
16 王志军,刘朋,谷向飞,等.基于曲线拟合的正交并联六维力传感器静态标定[J].机械设计与研究,2020,36(4):33-37. doi:10.13952/j.cnki.jofmdr.2020.0142
WANG Zhi-jun, LIU Peng, GU Xiang-fei, et al. Static calibration research on orthogonal parallel six-dimensional force sensor based on curve fitting[J]. Machine Design & Research, 2020, 36(4): 33-37.
doi: 10.13952/j.cnki.jofmdr.2020.0142
17 刘运毅,黎相成,黄约,等.基于极大似然估计的工业机器人腕部6维力传感器在线标定[J].机器人,2019,41(2):216-221,231. doi:10.13973/j.cnki.robot.180203
LIU Yun-yi, LI Xiang-cheng, HUANG Yue, et al. Online calibration for the 6-axis force sensor in the wrist of industrial robot based on maximum likelihood estimation[J]. Robot, 2019, 41(2): 216-221, 231.
doi: 10.13973/j.cnki.robot.180203
18 熊铃华,陈守良,张克武,等.一种六维轮力传感器标定分析[J].机电工程,2016,33(9):1094-1097,1139. doi:10.3969/j.issn.1001-4551.2016.09.012
XIONG Ling-hua, CHEN Shou-liang, ZHANG Ke-wu, et al. Calibration and analysis of six-dimensional wheel force sensor[J]. Journal of Mechanical & Electrical Engineering, 2016, 33(9): 1094-1097, 1139.
doi: 10.3969/j.issn.1001-4551.2016.09.012
[1] 王志军,张小涛,李梦祥. 基于多项式拟合的六维力传感器解耦算法研究[J]. 工程设计学报, 2023, 30(5): 571-578.
[2] 朱发运,王昀,朱发兴,董月,陈肇麟. 环模智能定孔疏通装置设计研究[J]. 工程设计学报, 2023, 30(5): 634-639.
[3] 金洪杨,岳龙旺,刘景达,郑卫卫,赵朝,徐嘉辉. 基于散粒体阻塞机理的变刚度柔性机械臂研究[J]. 工程设计学报, 2023, 30(4): 449-455.
[4] 李琦琦,徐向荣,张卉. 基于自适应神经网络的机械臂滑模轨迹跟踪控制[J]. 工程设计学报, 2023, 30(4): 512-520.
[5] 段韦婕,秦慧斌,刘荣,李中一,白绍平. 可重构变刚度柔性驱动器的设计与性能分析[J]. 工程设计学报, 2023, 30(2): 262-270.
[6] 贾纪鹏,臧立彬,陈勇,林霄喆,陈杰,武一民. 支承刚度及齿面涂层对斜齿轮副啮合特性的影响研究[J]. 工程设计学报, 2023, 30(1): 48-56.
[7] 米鑫,李虹,郭彦青,高宏伟,王浩楠,宁羿帆. 基于线性回归的单柱塞泵单向阀参数优化[J]. 工程设计学报, 2022, 29(6): 705-712.
[8] 刘江,肖正明,张龙隆,刘卫标. 考虑摆线轮磨损的RV减速器传动精度可靠性分析与参数优化[J]. 工程设计学报, 2022, 29(6): 739-747.
[9] 李梦,尹宗军. 一种零件综合质量评定方法研究[J]. 工程设计学报, 2022, 29(4): 410-418.
[10] 张嘉宁,张明路,李满宏,张坦. 面向灰库清理的超大伸缩比机械臂结构设计与刚度优化[J]. 工程设计学报, 2022, 29(4): 430-437.
[11] 陈一帆,吴倩,蒋凌,华亮. 基于声信号识别的焊后残余应力处理质量检测方法[J]. 工程设计学报, 2022, 29(3): 272-278.
[12] 陶晓东, 郭安福, 李辉, 韩伟, 李万才, 李涛. 基于灵敏度分析的盘式开沟机性能分析及优化[J]. 工程设计学报, 2022, 29(1): 59-65.
[13] 赵凯平, 何涛, 王传礼, 史瑞. 双弹簧电液激振缸振幅补偿性能的研究[J]. 工程设计学报, 2021, 28(6): 737-745.
[14] 李然然, 张凯, 柴麟, 张龙, 刘宝林, 李国民. 黏滑振动下机械式自动垂直钻具稳定平台的控制性能研究[J]. 工程设计学报, 2021, 28(6): 746-757.
[15] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.