Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (4): 449-455    DOI: 10.3785/j.issn.1006-754X.2023.00.046
机器人与机构设计     
基于散粒体阻塞机理的变刚度柔性机械臂研究
金洪杨1(),岳龙旺1(),刘景达1,郑卫卫1,赵朝1,徐嘉辉2
1.河南工业大学 机电工程学院,河南 郑州 450001
2.郑州长城仪器科技研究院有限公司,河南 郑州 450001
Research on flexible manipulator with variable stiffness based on particle blocking mechanism
Hongyang JIN1(),Longwang YUE1(),Jingda LIU1,Weiwei ZHENG1,Zhao ZHAO1,Jiahui XU2
1.School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
2.Zhengzhou Great Wall Scientific Instrument Research Institute Co. , Ltd. , Zhengzhou 450001, China
 全文: PDF(3480 KB)   HTML
摘要:

为提高柔性机械臂的刚度和控制精度,基于散粒体阻塞机理对柔性机械臂的变刚度控制进行了研究。在柔性硅胶管内部填充塑料颗粒以构成变刚度杆,并通过理论分析和实验研究构建了其刚度模型。沿圆周方向对称并联布置3根变刚度杆以构成变刚度柔性机械臂,并基于搭建的实验平台对柔性机械臂进行变刚度控制和定位精度分析。结果表明:散粒体阻塞不仅可以实现柔性机械臂的刚度调节,还可以提高其控制精度;柔性机械臂的剪切刚度与变刚度杆的真空度成正比,柔性机械臂的定位精度与变刚度杆的剪切刚度也存在一定的正比关系。研究结果对促进柔性机械臂在工业机器人、服务机器人领域的广泛应用和提高人-机交互、人-机协同安全性有重要意义。

关键词: 变刚度杆柔性机械臂定位精度散粒体阻塞    
Abstract:

In order to improve the stiffness and control accuracy of flexible manipulators, the variable stiffness control for flexible manipulators was studied based on the particle blocking mechanism. A variable stiffness rod was formed by filling plastic particles in the flexibility silicone tube, and its stiffness model was built through the theoretical analysis and experimental research. Three variable stiffness rods were symmetrically arranged in parallel to form a variable stiffness flexible manipulator. Based on the established experimental platform, the variable stiffness control and positioning accuracy analysis for the flexible manipulator were carried out. The results showed that particle blocking could not only achieve the stiffness adjustment of the flexible manipulator, but also improve its control accuracy; the shear stiffness of the flexible manipulator was proportional to the vacuum degree of the variable stiffness rod, and the positioning accuracy of the flexible manipulator was also proportional to the shear stiffness of the variable stiffness rod. The research results are of great significance in promoting the wide application of flexible manipulators in the fields of industrial robots and service robots, and improving the safety of human-machine interaction and human-machine collaboration.

Key words: variable stiffness rod    flexible manipulator    positioning accuracy    particle blocking
收稿日期: 2022-08-03 出版日期: 2023-09-04
CLC:  TH 164  
基金资助: 国家自然科学基金资助项目(51541508);河南省自然科学基金资助项目(182300410286)
通讯作者: 岳龙旺     E-mail: jinhong.yang@163.com;yue_lw@163.com
作者简介: 金洪杨(1997—),女,辽宁葫芦岛人,硕士生,从事机器人、机器视觉技术研究,E-mail: jinhong.yang@163.com,https://orcid.org/0000-0002-3251-5354
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
金洪杨
岳龙旺
刘景达
郑卫卫
赵朝
徐嘉辉

引用本文:

金洪杨,岳龙旺,刘景达,郑卫卫,赵朝,徐嘉辉. 基于散粒体阻塞机理的变刚度柔性机械臂研究[J]. 工程设计学报, 2023, 30(4): 449-455.

Hongyang JIN,Longwang YUE,Jingda LIU,Weiwei ZHENG,Zhao ZHAO,Jiahui XU. Research on flexible manipulator with variable stiffness based on particle blocking mechanism[J]. Chinese Journal of Engineering Design, 2023, 30(4): 449-455.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.046        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/449

图1  变刚度杆结构
图2  变刚度杆剪切模型
图3  变刚度杆内部受力模型
图4  变刚度杆力学特性实验装置
图5  不同真空度下变刚度杆负载力与位移的关系曲线
图6  变刚度杆剪切刚度的理论值与实验值对比
图7  变刚度柔性机械臂系统
参数量值
初始长度510 mm
质量746 g
气动人工肌肉直径20 mm
最大弯曲角度90°
表1  变刚度柔性机械臂的主要参数
图8  变刚度柔性机械臂实验平台1—空压机;2—控制电脑;3—直流电源;4—Arduino单片机;5—电磁阀;6—压力阀;7—变刚度柔性机械臂;8—角度传感器;9—位移传感器。
图9  变刚度柔性机械臂驱动实验现场
图10  变刚度柔性机械臂的驱动性能曲线
真空度/kPa剪切刚度/(N/m)定位精度/(o)
01800.42
-13.32400.25
-26.63000.20
-39.93600.19
表2  变刚度柔性机械臂的剪切刚度与定位精度
图11  变刚度柔性机械臂定位精度与剪切刚度的关系曲线
1 O’HERN C S, SILBERT L E, LIU A J, et al. Jamming at zero temperature and zero applied stress: the epitome of disorder[J]. Physical Review E, 2003, 68(1): 011306.
2 陈煜宇,刘磊,李博,等.柔性驱动与刚度可调结构/功能一体化微创手术操作臂设计制造与性能研究[J].机械工程学报,2018,54(17):53-61. doi:10.3901/jme.2018.17.053
CHEN Y Y, LIU L, LI B, et al. Design, fabrication and performance of a flexible minimally invasive surgery manipulator integrated with soft actuation and variable stiffness[J]. Journal of Mechanical Engineering, 2018, 54(17): 53-61.
doi: 10.3901/jme.2018.17.053
3 XU F Y, JIANG F Y, JIANG Q S, et al. Soft actuator model for a soft robot with variable stiffness by coupling pneumatic structure and jamming mechanism[J]. IEEE Access, 2020, 8: 26356-26371.
4 AMEND J R, BROWN E, RODENBERG N, et al. A positive pressure universal gripper based on the jamming of granular material[J]. IEEE Transactions on Robotics, 2012, 28(2): 341-350.
5 PUTZU F, KONSTANTINOVA J, ALTHOEFER K. Soft particles for granular jamming[C]//Annual Conference Towards Autonomous Robotic Systems, Cham: Springer, 2019: 65-74.
6 项超群,张颖,郭少飞,等.新型变刚度软体手臂的设计及控制[J].东北大学学报(自然科学版),2018,39(1):93-96,107.
XIANG C Q, ZHANG Y, GUO S F, et al. Design and control of a novel variable stiffness soft arm[J]. Journal of Northeastern University (Natural Science), 2018, 39(1): 93-96, 107.
7 李康康,胡锦洋,邢普,等.面向柔顺装配装夹的机器人手腕变刚度机理研究[J].机械工程学报,2022,58(19):77-85. doi:10.3901/jme.2022.19.077
LI K K, HU J Y, XING P, et al. Research on variable-stiffness mechanisms of robot wrists for compliant assembling-clamping[J]. Journal of Mechanical Engineering, 2022, 58(19): 77-85.
doi: 10.3901/jme.2022.19.077
8 STELTZ E, MOZEIKA A, RODENBERG N, et al. JSEL: jamming skin enabled locomotion[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, Oct. 10-15, 2009.
9 STELTZ E, MOZEIKA A, REMBISZ J, et al. Jamming as an enabling technology for soft robotics[C]//SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring, San Diego, California, Mar. 7-11, 2010.
10 BROWN E, RODENBERG N, AMEND J, et al. Universal robotic gripper based on the jamming of granular material[J]. Proceedings of the National Academy of Sciences, 2010, 107(44): 18809-18814.
11 段韦婕,秦慧斌,刘荣,等.可重构变刚度柔性驱动器的设计与性能分析[J].工程设计学报,2023,30(2):262-270. doi:10.3785/j.issn.1006-754X.2023.00.028
DUAN W J, QIN H B, LIU R, et al. Design and performance analysis of reconfigurable variable stiffness compliant actuator[J]. Chinese Journal of Engineering Design, 2023, 30(2): 262-270.
doi: 10.3785/j.issn.1006-754X.2023.00.028
12 CHENG N G, LOBOVSKY M B, KEATING S J, et al. Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media[C]//2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, May 14-18, 2012.
13 JIANG A, XYNOGALAS G, DASGUPTA P, et al. Design of a variable stiffness flexible manipulator with composite granular jamming and membrane coupling[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Oct. 7-12, 2012.
14 JIANG A, SECCO E L, WURDEMANN H, et al. Stiffness-controllable octopus-like robot arm for minimally invasive surgery[C]//3rd Joint Workshop on New Technologies for Computer/Robot Assisted Surger, Verona, Sep. 11-13, 2013.
15 ATHANASSIADIS A G, MISKIN M Z, KAPLAN P, et al. Particle shape effects on the stress response of granular packings[J]. Soft Matter, 2014, 10(1): 48-59.
16 WALL V, DEIMEL R, BROCK O. Selective stiffening of soft actuators based on jamming[C]//2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, May 26-30, 2015.
17 石晓磊,岳龙旺.变刚度杆轴向压缩力的实验研究[J].科技创新与生产力,2017(8):91-93. doi:10.3969/j.issn.1674-9146.2017.08.091
SHI X L, YUE L W. Research on axial compression force of variable stiffness link[J]. Sci-tech Innovation and Productivity, 2017(8): 91-93.
doi: 10.3969/j.issn.1674-9146.2017.08.091
18 ZHANG W H, WEN Z, YOU Z P, et al. Analysis of vibration characteristics of rotating parallel flexible manipulator considering joint elastic constraints[J]. Journal of Vibroengineering, 2022, 24(7): 1324-1339.
19 姚立纲,李敬仪,东辉.气动软体机械臂模块变刚度性能分析[J].机械工程学报,2020,56(9):36-44. doi:10.3901/jme.2020.09.036
YAO L G, LI J Y, DONG H. Variable stiffness analysis on a pneumatic soft manipulator[J]. Journal of Mechanical Engineering, 2020, 56(9): 36-44.
doi: 10.3901/jme.2020.09.036
[1] 何改云, 张肖磊, 张大卫, 孙光明. 机床直线轴重复定位精度三维评价方法研究[J]. 工程设计学报, 2019, 26(4): 371-378.
[2] 南敬昌, 包晓伟, 郭映言. 基于低频触发的高精度RFID定位系统的设计与实现[J]. 工程设计学报, 2017, 24(2): 225-231.
[3] 吕宽州,陈素霞,黄全振. 柔性机械臂的轨迹跟踪与振动模糊控制[J]. 工程设计学报, 2015, 22(1): 78-83.
[4] 陈旭东, 冯攀. 直流电机复合定位控制系统性能分析及系统优化[J]. 工程设计学报, 2012, 19(5): 391-399.
[5] 方水光, 邵丹璐, 金英连, 王斌锐. 柔性仿人机械臂设计与动力学仿真[J]. 工程设计学报, 2012, 19(4): 307-311.
[6] 项占琴, 李瑞忠. 交流伺服电机动态定位系统基于高速终端反馈的改进[J]. 工程设计学报, 2004, 11(4): 201-204.