Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (4): 456-466    DOI: 10.3785/j.issn.1006-754X.2023.00.055
摩擦学与表面/界面技术     
进给系统热变形对机床运动重复性误差的影响研究
孙光明1,2(),杨景景1,陈思奇1,赵坚1(),张贺帅2
1.天津城建大学 控制与机械工程学院,天津 300384
2.天津大学 机构理论与装备设计教育部重点实验室,天津 300072
Research on the effect of thermal deformation of feed system on the motion repeatability errors of machine tool
Guangming SUN1,2(),Jingjing YANG1,Siqi CHEN1,Jian ZHAO1(),Heshuai ZHANG2
1.School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China
2.Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, China
 全文: PDF(8499 KB)   HTML
摘要:

为了分析进给系统热变形对机床运动重复性误差的影响,提出了一种基于分层模型-移动热源的进给系统热变形建模方法。将进给系统分为丝杠层和工作台层,将移动结合面等效为弹簧。采用实体单元和接触单元建立了有限元模型,在丝杠和导轨上施加移动热源,获得进给系统的温度场和热变形。在此基础上,分析了工作台进给速度、轴承预紧力矩和滑块支撑距离对机床运动重复性误差的影响,并进行了实验验证。研究表明,工作台进给速度和轴承预紧力距对机床运动重复性误差的影响较大,滑块支撑距离对机床运动重复性误差的影响较小。研究结果为在机床设计和装配中减小机床运动重复性误差提供了依据。

关键词: 进给系统热变形移动热载荷运动重复性误差    
Abstract:

In order to analyze the effect of thermal deformation of feed system on the motion repeatability errors of machine tool, a modeling method for thermal deformation of feed system based on a layered model-moving heat source was proposed. The feed system was divided into a screw layer and worktable layer, and the moving joint surface was equivalent to a spring. The finite element model was established by using solid element and contact element. The temperature field and thermal deformation of the feed system were obtained by applying moving heat source to the screw and guide rail. On this basis, the effect of worktable feed speed, bearing preload torque, and slider support distance on the motion repeatability errors of machine tool was analyzed and verified by experiments. The research showed that the worktable feed speed and bearing preload torque had a significant impact on the motion repeatability errors of machine tool, while the slider support distance had a relatively small impact on the motion repeatability errors of machine tool. The research results provide a basis for reducing the motion repeatability errors of machine tool in machine tool design and assembly.

Key words: feed system    thermal deformation    move thermal load    motion repeatability error
收稿日期: 2023-03-03 出版日期: 2023-09-04
CLC:  TH 128  
基金资助: 天津市自然科学基金青年项目(22JCQNJC01000);天津市企业科技特派员项目(22YDTPJC00260)
通讯作者: 赵坚     E-mail: gmsun@tju.edu.cn;zhaojiantcu@163.com
作者简介: 孙光明(1987—),男,河南驻马店人,讲师,博士,从事精密机床误差测量、分析与补偿技术研究,E-mail: gmsun@tju.edu.cn, https://orcid.org/0000-0002-0961-9964
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙光明
杨景景
陈思奇
赵坚
张贺帅

引用本文:

孙光明,杨景景,陈思奇,赵坚,张贺帅. 进给系统热变形对机床运动重复性误差的影响研究[J]. 工程设计学报, 2023, 30(4): 456-466.

Guangming SUN,Jingjing YANG,Siqi CHEN,Jian ZHAO,Heshuai ZHANG. Research on the effect of thermal deformation of feed system on the motion repeatability errors of machine tool[J]. Chinese Journal of Engineering Design, 2023, 30(4): 456-466.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.055        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/456

图1  精密机床直线进给系统的结构
图2  进给系统分层模型
图3  滚珠丝杠螺母副等效刚度处理
图4  导轨滑块副有限元模型
图5  进给系统有限元模型
边界条件计算公式字符意义计算结果
轴承生热率q1[22]

q1=0.104?7n1(M1+M2)V

M1=10-7f0vn23dm3vn1>2?000?mm2/s?r/min160×10-7f0dm3vn1<2?000?mm2/s?r/min??????????????????????????????M2=f1Fβdm

n1为轴承转速;M1为轴承所受的黏性摩擦力矩;M2为轴承所受的机械摩擦力矩;V为热源体积;?0为取决于润滑类型和轴承参数的常数;ν为润滑剂运动黏度;dm为轴承中径;?1为与载荷和轴承结构相关的系数;Fβ 为轴承摩擦力矩的计算载荷1 510 520 W/m3

滚珠丝杠与螺母间的

热流密度q2[23]

q2=0.104?7n2(0.94Mp+Md)A2

Md=FαPh2πη11-?η12

Mp=FpPh2πη1(1-?η12)

n2为丝杠转速;Mp为滚珠螺旋阻力矩;Md为驱动力矩;Α2为丝杠与螺母的接触面积;Fα 为丝杠的轴向载荷;Ρh为丝杠的导程;η1为丝杠的传动效率;Fp为丝杠的轴向预紧力10 300 W/m2
电机热流密度q3[24]q3=Mt?n39?550?A31-?η2Mt为电机输出扭矩;n3为电机转速;η2为电机机械效率;A3为电机表面积1 500 W/m2

导轨与滑块间的

热流密度q4[24]

q4=μWgv0J?A4μ为导轨与滑块间的动摩擦因数;W为施加在摩擦面上的力;g为重力加速度取9.8 m/s2J为热功当量取4.2 J/cal;ν0为滑动速度;A4为导轨与滑块的摩擦面积580 W/m2

自然对流换热系数

h1[25]

h1=Nu?κL

Nu=CGr?Prn

Gr=L3gavΔTv2

Pr=cpρvk

Nu为努塞尔数;κ为流体的热传导系数;L为定型尺寸;Gr为格拉晓夫数;Pr为普朗特系数;av为关于流体体积的膨胀系数;?T为试验台表面与液体之间的温度差;cp为流体的等压比热容;ρ为流体密度;C, n为常数,与液体的流动状态和发生导热表面的形状有关

轴承座表面、

电机座表面:

55 W/(m2·℃)

强迫对流换热系数

h2[25]

h2=Nu?κL

Nu=Re23·Pr23(Re<4.3×105,?0.7<Pr<670)Re=ω×d0vf

Re为雷诺数;ω为角速度;d0为公称直径;vf为空气的运动黏度

丝杠螺母座表面:

230 W/(m2·℃);

丝杠表面:

650 W/(m2·℃)

表1  机床热边界条件分析
图6  基于分层-移动热源的进给系统分层仿真流程
图7  丝杠层温度场
图8  丝杠层结构场
图9  工作台温度场
图10  工作台结构场
图11  工作台运动误差仿真结果
区域线性位移重复性误差/μm偏摆角重复性误差/(μm/m)俯仰角重复性误差/(μm/m)
P11.483.7211.00
P21.391.540.83
P31.462.1410.85
P41.331.240.80
P50.710.521.05
表2  工作台运动重复性误差
图12  不同工作台进给速度下机床运动重复性误差仿真结果
图13  不同轴承预紧力矩下机床运动重复性误差仿真结果
图14  不同滑块支撑距离下机床运动重复性误差仿真结果
图15  机床运动重复性误差测试实验现场
图16  不同工作台进给速度下机床运动重复性误差实验结果
图17  不同轴承预紧力矩下机床运动重复性误差实验结果
图18  不同滑块支撑距离下机床运动重复性误差实验结果
1 SUN G M, HE G Y, ZHANG D W, et al. Experimental study on the repeatability of positioning of linear axes of machine tools[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234(4): 739-751.
2 CHO D H, KWON H C, KIM K H. Improvement of position repeatability of a linear stage with yaw minimization[J]. Applied Sciences, 2022, 12(2): 657-657.
3 RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools: A review[J]. International Journal of Machine Tools and Manufacture, 2000, 40(9): 1235-1256.
4 LIU J L, MA C, WANG S L. Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools[J]. Mechanical Systems and Signal Processing, 2020, 143: 106538. doi:10.1016/j.ymssp.2019.106538
doi: 10.1016/j.ymssp.2019.106538
5 孙志超,陶涛,黄晓勇,等.车床主轴与进给轴耦合热误差建模及补偿研究[J].西安交通大学学报,2015,49(7):105-112. doi:10.7652/xjtuxb201507018
SUN Z C, TAO T, HUANG X Y, et al. Modeling and compensation of coupled thermal error of spindle and feed shafts[J]. Journal of Xi'an Jiaotong University, 2015, 49(7): 105-112.
doi: 10.7652/xjtuxb201507018
6 李彬,张云,王立平,等.基于遗传算法优化小波神经网络数控机床热误差建模[J].机械工程学报, 2019,55(21):215-220. doi:10.3901/JME.2019.21.215
LI B, ZHANG Y, WANG L P, et al. Modeling for CNC machine tool thermal error based on genetic algorithm optimization wavelet neural networks[J]. Journal of Mechanical Engineering, 2019, 55(21): 215-220.
doi: 10.3901/JME.2019.21.215
7 MA C, ZHAO L, MEI X S, et al. Thermal error compensation of high-speed spindle system based on a modified BP neural network[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/12): 3071-3085.
8 YANG H, NI J. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error[J]. International Journal of Machine Tools and Manufacture, 2004, 45(4): 455-465.
9 张毅,杨建国.基于灰色理论预处理的神经网络机床热误差建模[J].机械工程学报,2011,47(7):134-139. doi:10.3901/jme.2011.07.134
ZHANG Y, YANG J G. Modeling for machine tool thermal error based on grey model preprocessing neural network[J]. Journal of Mechanical Engineering, 2011, 47(7): 134-139.
doi: 10.3901/jme.2011.07.134
10 鞠萍华,黄洛.基于灰色GM(1,4)模型的数控机床热误差补偿技术[J].重庆大学学报,2017,40(10):23-29. doi:10.11835/j.issn.1000-582X.2017.10.003
JU P H, HUANG L. Thermal error compensation technology of CNC machine tools based on Grey Model (1,4)[J]. Journal of Chongqing University (Natural Science Edition), 2017, 40(10): 23-29.
doi: 10.11835/j.issn.1000-582X.2017.10.003
11 LEI M H, YANG J, WANG S, et al. Semi-supervised modeling and compensation for the thermal error of precision feed axes[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9/12): 4629-4640.
12 黄智,贾臻杰,邓涛,等.基于支持向量机的静压转台热误差补偿[J].浙江大学学报(工学版),2019,53(8):1594-1601.
HUANG Z, JIA Z J, DENG T, et al. Thermal error compensation of static pressure turntable based on support vector machine[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(8): 1594-1601.
13 冯文龙,黄奕乔,拓占宇,等.基于温度积分方法的大型数控机床光栅定位热误差建模及实时补偿[J].上海交通大学学报,2016,50(5):710-715.
FENG W L, HUANG Y Q, TUO Z Y, et al. Modeling of thermally induced grating positioning error of large machine tools based on temperature integral method and reat-time compensation[J]. Journal of Shanghai Jiaotong University, 2016, 50(5): 710-715.
14 KIM S K, CHO D W. Real-time estimation of temperature distribution in a ball-screw system[J]. International Journal of Machine Tools and Manufacture, 1997, 37(4): 451-464.
15 张庆锋,高翔.基于ANSYS的高速精密冲床热-结构耦合分析[J].机床与液压,2016,44(18):42-47.
ZHANG Q F, GAO X. Thermal-structure coupling analysis for high-speed precision press based on ANSYS[J]. Machine Tool and Hydraulics, 2016, 44(18): 42-47. doi:10.3969/j.issn.1001-3881.2016.18.008
doi: 10.3969/j.issn.1001-3881.2016.18.008
16 GOMEZ-ACEDO E, OLARRA A, DE LOPEZ N la calle. A method for thermal characterization and modeling of large gantry-type machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(9/12): 875-886.
17 任朝晖,李炎臻,刘杨.高速电主轴热力学分析的仿真研究[J].机床与液压,2018,46(1):121-125. doi:10.3969/j.issn.1001-3881.2018.01.025
REN Z H, LI Y Z, LIU Y. High-speed spindle thermodynamic analysis and simulation research[J]. Machine Tool and Hydraulics, 2018, 46(1):121-125.
doi: 10.3969/j.issn.1001-3881.2018.01.025
18 于慎波,杨成玉,赵海宁,等.高速永磁同步电主轴的热态特性研究[J].重型机械,2017(5):26-30.
YU S B, YANG C Y, ZHAO H N, et al. Research on thermal characteristics for high speed permanent magnetic synchronous motorized spindle[J]. Heavy Machinery, 2017(5): 26-30.
19 高帅,何毅斌,王彦伟,等.影响高速电主轴热学特性的有限元优化分析[J].制造技术与机床,2018(11):36-38,43.
GAO S, HE Y B, WANG Y W, et al. Finite element analysis of thermal characteristics affecting high speed spindle[J]. Manufacturing Technology & Machine Tool, 2018(11): 36-38, 43.
20 MA C, YANG J, ZHAO L, et al. Simulation and experimental study on the thermally induced deformations of high-speed spindle system[J]. Applied Thermal Engineering, 2015, 86: 251-268.
21 刘阔,韩伟,王永青,等.数控机床进给轴热误差补偿技术研究综述[J].机械工程学报,2021,57(3):156-173. doi:10.3901/jme.2021.03.156
LIU K, HAN W, WANG Y Q, et al. Review on thermal error compensation for feed axes of CNC machine tools[J]. Journal of Mechanical Engineering, 2021, 57(3): 156-173.
doi: 10.3901/jme.2021.03.156
22 付振彪,王太勇,张雷,等.滚珠丝杠进给系统动力学建模与动态特性分析[J].振动与冲击,2019,38(16):56-62.
FU Z B, WANG T Y, ZHANG L, et al. Dynamic modeling and vibration analysis of ball screw feed driving systems[J].Journal of Vibration and Shock,2019,38(16):56-62.
23 ROY S, SAHA S K. Thermal and friction characteristics of laminar flow through a circular duct having helical screw-tape with oblique teeth inserts and wire coil inserts[J]. Experimental Thermal & Fluid Science, 2015, 68: 733-743.
24 高卫国,王伟松,张大卫,等.考虑结构热变形的机床进给系统热误差研究[J].工程设计学报,2019,26(1):29-38. doi:10.3785/j.issn.1006-754X.2019.01.006
GAO W G, WANG W S, ZHANG D W, et al. Research on thermal error of machine tool feed system considering structural thermal deformation[J].Chinese Journal of Engineering Design, 2019, 26(1): 29-38.
doi: 10.3785/j.issn.1006-754X.2019.01.006
25 杨金玉. 卧式加工中心热特性分析与工作空间热误差建模方法[D]. 天津:天津大学, 2015.
YANG J Y. Methods on thermal analysis and thermal error modeling in working space of horizontal machine tools[D]. Tianjin: Tianjin University, 2015.
26 杨海栗,田建平,胡勇,等.龙门加工中心丝杠组件热态性能与温度场实验研究[J].组合机床与自动化加工技术,2015(1):4-8.
YANG H L, TIAN J P, HU Y, et al. The thermal properties and temperature field experimental study for ball screw system of gantry type machining center [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(1): 4-8.
[1] 孙光明,张大卫,孙铭泽,徐鹏飞,陈发泽,李志军. 精密机床直线进给系统误差均化机理研究[J]. 工程设计学报, 2023, 30(2): 200-211.
[2] 罗茹楠, 牛文铁, 王晨升. 基于机电-刚柔耦合特性的进给系统动态误差影响因素分析[J]. 工程设计学报, 2019, 26(5): 561-569.
[3] 黄华, 王庆文, 郭润兰, 刘晓健, 张来喜. 基于状态空间模型的机床加工精度分析[J]. 工程设计学报, 2019, 26(3): 321-329.
[4] 高卫国, 王伟松, 张大卫, 刘腾, 李金和, 翁凌韬, 齐向阳. 考虑结构热变形的机床进给系统热误差研究[J]. 工程设计学报, 2019, 26(1): 29-38.
[5] 卢燕, 王珏, 凌明祥, 杜平安. 精密离心机热变形多物理场耦合数值计算[J]. 工程设计学报, 2016, 23(1): 49-53,73.
[6] 胡俊峰,郝亚洲,徐贵阳,杨 健. 考虑温度效应的微操作平台的建模与性能分析[J]. 工程设计学报, 2015, 22(2): 143-154.
[7] 李哲, 李华龙, 王小强, 孙志超, 苏兴旺. 进给系统刚度对内球面车削的误差影响研究[J]. 工程设计学报, 2012, 19(4): 268-273.
[8] 陈志华, 关富玲. 星载抛物面天线热变形敏感性分析[J]. 工程设计学报, 2010, 17(4): 263-267.