Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 200-211    DOI: 10.3785/j.issn.1006-754X.2023.00.023
保质设计     
精密机床直线进给系统误差均化机理研究
孙光明1,2(),张大卫1,孙铭泽3,徐鹏飞1,陈发泽1,李志军4
1.天津大学 机构理论与装备设计教育部重点实验室,天津 300072
2.天津城建大学 控制与机械工程学院,天津 300384
3.天津理工大学 机械工程学院,天津 300082
4.天津大学 内燃机燃烧学国家重点实验室,天津 300072
Research on error averaging mechanism of linear feed system for precision machine tools
Guangming SUN1,2(),Dawei ZHANG1,Mingze SUN3,Pengfei XU1,Faze CHEN1,Zhijun LI4
1.Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, China
2.School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China
3.School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300082, China
4.State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
 全文: PDF(5153 KB)   HTML
摘要:

精密机床直线进给系统的误差均化现象是机床精度设计中的重点关注问题。以精密卧式加工中心中典型的双导轨四滑块直线进给系统为研究对象,重点研究滚动导轨副几何误差与工作台运动误差之间的均化机理。首先,利用基于传递函数的等效刚度法,建立了导轨几何误差与工作台运动误差之间的映射关系,并以法向直线度误差为例揭示了误差均化机理。然后,建立了双导轨四滑块直线进给系统有限元模型,分析了导轨几何误差与工作台运动误差的均化系数。最后,开展了误差均化机理分析实验,通过测量导轨几何误差和工作台运动误差并计算误差均化系数,验证了理论分析与仿真分析的正确性。研究结果为机床的精度设计提供了理论依据。

关键词: 精密机床直线进给系统误差均化均化系数    
Abstract:

The phenomenon of error averaging in the linear feed system of precision machine tools is a key concern in machine tool accuracy design. Taking a typical linear feed system with double guide rails and four sliders in precision horizontal machining center as the research object, the averaging mechanism between the geometric error of rolling guide rail pair and the motion error of workbench was emphatically studied. Firstly, the equivalent stiffness method based on transfer function was used to establish the mapping relationship between the geometric error of guide rail and the motion error of workbench, and the error averaging mechanism was revealed by taking the normal straightness error as an example. Then, the finite element model of the linear feed system with double guide rails and four sliders was established, and the averaging coefficients of the geometric error of guide rail and the motion error of workbench were analyzed. Finally, an error averaging mechanism analysis experiment was conducted to verify the correctness of the theoretical analysis and simulation analysis by measuring the geometric error of guide rail and the motion error of workbench and calculating the error averaging coefficient. The research results provide a theoretical basis for the accuracy design of machine tools.

Key words: precision machine tool    linear feed system    error averaging    averaging coefficient
收稿日期: 2022-07-18 出版日期: 2023-05-06
CLC:  TH 122  
基金资助: 国家重点研发计划项目(2018YFB1701201);天津市自然科学基金青年项目(22JCQNJC01000);天津市企业特派员项目(22YDTPJC00260)
作者简介: 孙光明(1987—),男,河南驻马店人,讲师,博士,从事精密机床误差测量、分析与补偿技术研究,E-mail: gmsun@tju.edu.cn,https://orcid.org/0000-0002-0961-9964
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙光明
张大卫
孙铭泽
徐鹏飞
陈发泽
李志军

引用本文:

孙光明,张大卫,孙铭泽,徐鹏飞,陈发泽,李志军. 精密机床直线进给系统误差均化机理研究[J]. 工程设计学报, 2023, 30(2): 200-211.

Guangming SUN,Dawei ZHANG,Mingze SUN,Pengfei XU,Faze CHEN,Zhijun LI. Research on error averaging mechanism of linear feed system for precision machine tools[J]. Chinese Journal of Engineering Design, 2023, 30(2): 200-211.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.023        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/200

图1  双导轨四滑块直线进给系统
图2  单滑块力学模型
图3  导轨几何误差作用下滑块的受力分析
图4  双导轨四滑块直线进给系统静力平衡模型
图5  导轨几何误差波长对工作台直线度误差均化系数的影响
图6  导轨几何误差幅值对工作台直线度误差均化系数的影响
参数导轨和滑块工作台
材料马氏体不锈钢QT500
密度/(g/cm3)7.757.0
弹性模量/GPa206162
泊松比0.30.293
表1  单滑块有限元模型材料属性设置
图7  滚柱预紧量与导轨几何误差的映射关系
图8  滚柱与滚道面接触的几何关系
图9  基于弹簧单元法的单滑块有限元模型
图10  单个滚柱的接触刚度曲线对比
图11  滑块的静刚度曲线对比
图12  双导轨四滑块直线进给系统有限元模型
图13  导轨几何误差形态示意
图14  不同系数p对应的导轨几何误差形态
图15  系数p对工作台直线度误差的影响
图16  不同系数q对应的导轨几何误差形态
图17  系数q对工作台直线度误差的影响
图18  不同系数 τ 对应的导轨几何误差形态
图19  系数 τ 对工作台直线度误差的影响
参数数值
床身1 800×600×485
工作台570×550×102
导轨跨距474
滑块间距443
表2  误差均化机理分析实验台参数 (mm)
仪器及工具用途备注
光电准直仪用于测量导轨安装基面、滑块面和工作台的直线度误差AIM系列,分辨率为0.01'',精度为0.1''
扭矩扳手对导轨的固定螺栓施加规定的拧紧力矩力矩为5~60 Nm
水平仪平行度测量和角度调整0.02 mm/m
表3  误差均化机理分析实验所用仪器及工具
图20  导轨和工作台的直线度误差测量现场
图21  导轨和工作台的直线度误差测量结果(第1次实验)
部件直线度误差
xy
左导轨6.6006.100
右导轨13.7008.100
导轨副10.1507.100
工作台2.8203.070
表4  第1次实验中直线进给系统的误差传递情况 (μm)
比较项直线度误差均化系数
xy
相对误差/%6.95.4
仿真值0.2600.410
实验值0.2780.432
表5  直线度误差均化系数的实验与仿真结果比较(第1次实验)
图22  导轨和工作台的直线度误差测量结果(第2次实验)
部件直线度误差
xy
左导轨19.4708.050
右导轨9.5308.220
导轨副14.5008.135
工作台4.8304.160
表6  第2次实验中直线进给系统的误差传递情况 (μm)
比较项直线度误差均化系数
xy
相对误差/%28.124.6
仿真值0.2600.410
实验值0.3330.511
表7  直线度误差均化系数的实验与仿真结果比较(第2次实验)
1 LIU Y, CHEN M S, SUN Y W. Global toolpath modulation-based contour error pre-compensation for multi-axis CNC machining[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(7/8): 3171-3189.
2 WU S, WANG Y, LIU X, et al. Separating machining errors of S-shaped samples based on the comprehensive error field of five-axis machine tools[J]. Journal of Mechanical Science and Technology, 2022, 37(1): 305-316.
3 刘阔,韩伟,王永青,等.数控机床进给轴热误差补偿技术研究综述[J].机械工程学报,2021,57(3):156-173. doi:10.3901/jme.2021.03.156
LIU K, HAN W, WANG Y Q, et al. Review on thermal error compensation for feed axes of CNC machine tools[J]. Journal of Mechanical Engineering, 2021, 57(3): 156-173.
doi: 10.3901/jme.2021.03.156
4 孙光明,王奕苗,万仟,等.考虑装配变形的精密机床床身优化设计[J].工程设计学报,2022,29(3):318-326. doi:10.3785/j.issn.1006-754X.2022.00.035
SUN G M, WANG Y M, WAN Q, et al. Optimization design of precision machine tool bed considering assembly deformation[J]. Chinese Journal of Engineering Design, 2022, 29(3): 318-326.
doi: 10.3785/j.issn.1006-754X.2022.00.035
5 周微,朱若岭,张昊.数控机床进给系统运动精度与能耗控制研究[J].机电工程,2021,38(11):1387-1394. doi:10.3969/j.issn.1001-4551.2021.11.003
ZHOU W, ZHU R L, ZHANG H. Motion precision and energy consumption control for feed system of CNC machine tools[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(11): 1387-1394.
doi: 10.3969/j.issn.1001-4551.2021.11.003
6 PARK C H, CHUNG J H, LEE H, et al. Finite element analysis on the motion accuracy of hydrostatic table (1st. Analysis and experimental verification on single-side table) [J]. Journal of the Korean Society of Precision Engineering, 2000, 17(12): 137-144.
7 PARK C H, LEE H, KIM T H, et al. Finite element analysis on the motion accuracy of hydrostatic table (2nd. Analysis and experimental verification on double-side table) [J]. Journal of the Korean Society of Precision Engineering, 2002, 19(1): 65-70.
8 SHAMOTO E, PARK C H, MORIWAKI T. Analysis and improvement of motion accuracy of hydrostatic feed table [J]. CIRP Annals-Manufacturing Technology, 2001, 50(1): 285-290.
9 PARK C H, OH Y J, LEE C H, et al. Theoretical verification on the motion error analysis method of hydrostatic bearing tables using a transfer function[J]. International Journal of Precision Engineering and Manufacturing, 2003, 4(2): 64-70.
10 EKINCI T O, MAYER J R R. Relationships between straightness and angular kinematic errors in machines[J]. International Journal of Machine Tools and Manufacture, 2007, 47(12/13): 1997-2004.
11 EKINCI T O, MAYER J R R, CLOUTIER G M. Investigation of accuracy of aerostatic guideways[J]. International Journal of Machine Tools and Manufacture, 2009, 49(6): 478-487.
12 KHIM G, PARK C H, SHAMOTO E, et al. Prediction and compensation of motion accuracy in a linear motion bearing table[J]. Precision Engineering, 2011, 35(3): 393-399.
13 薛飞,赵万华.静压导轨误差均化效应影响因素研究[J]. 西安交通大学学报,2010,44(11):33-36. doi:10.7652/xjtuxb201011007
XUE F, ZHAO W H. Influencing factors on error averaging effect of hydrostatic guideway[J]. Journal of Xi’an Jiaotong University, 2010, 44(11): 33-36.
doi: 10.7652/xjtuxb201011007
14 XUE F, ZHAO W H, CHEN Y L, et al. Research on error averaging effect of hydrostatic guideways[J]. International Journal of Precision Engineering and Manufacturing, 2012, 36(1): 84-90.
15 QI E, FANG Z, SUN T, et al. A method for predicting hydrostatic guide error averaging effects based on three-dimensional profile error[J]. Tribology International, 2016, 95: 279-289.
16 ZHA J, CHEN Y, WANG Z. A tolerance design method for hydrostatic guideways motion accuracy based on error averaging effect[J]. Procedia Cirp, 2018, 75: 196-201.
17 刘锡尧,赵晓龙,刘波,等.高精度平面气浮导轨的误差均化效应研究[J].润滑与密封,2016,41(6):49-53. doi:10.3969/j.issn.0254-0150.2016.06.011
LIU X Y, ZHAO X L, LIU B, et al. Research on error averaging effect of high accuracy plane gas floating guide[J]. Lubrication Engineering, 2016, 41(6): 49-53.
doi: 10.3969/j.issn.0254-0150.2016.06.011
18 ZHAO X, DONG H, ZHANG J. Study on error averaging effects of aerostatic bearing considering rough surface profile[J]. IOP Conference Series: Materials Science and Engineering, 2018, 382(4): 042054.
19 HE G Y, SUN G M, ZHANG H S, et al. Hierarchical error model to estimate motion error of linear motion bearing table[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5/8): 1915-1927.
20 NI Y B, ZHOU H Y, SHAO C Y, et al. Research on the error averaging effect in a rolling guide pair[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 72.
[1] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[2] 何改云, 张肖磊, 张大卫, 孙光明. 机床直线轴重复定位精度三维评价方法研究[J]. 工程设计学报, 2019, 26(4): 371-378.