Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 262-270    DOI: 10.3785/j.issn.1006-754X.2023.00.028
基础零部件设计     
可重构变刚度柔性驱动器的设计与性能分析
段韦婕1(),秦慧斌1(),刘荣1,李中一2,白绍平3
1.中北大学 机械工程学院,山西 太原 030051
2.北京航空航天大学 杭州创新研究院,浙江 杭州 310051
3.奥尔堡大学 材料与制造系,北日德兰 奥尔堡 ;9220
Design and performance analysis of reconfigurable variable stiffness compliant actuator
Weijie DUAN1(),Huibin QIN1(),Rong LIU1,Zhongyi LI2,Shaoping BAI3
1.School of Mechanical Engineering, North University of China, Taiyuan 030051, China
2.Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
3.Department of Materials and Production, Aalborg University, Aalborg 9220, Denmark
 全文: PDF(4434 KB)   HTML
摘要:

柔性驱动器因其固有的柔顺特性,能够实现机器人与人之间的安全交互,且具有较强的环境适应能力。为满足外骨骼机器人对关节柔性及变刚度特性的要求,设计了一种具有可重构性的变刚度柔性驱动器,可通过改变弹性元件的几何参数、材料和数量来实现重构,通过径向调节预紧力来实现可调范围内的变刚度。首先,运用零长度机架四杆机构的传动原理,建立了变刚度柔性驱动器的刚度数学模型,分析了柔性分支数和弹性元件刚度、预紧力对驱动器输出扭矩和刚度的影响规律。然后,建立了驱动器的ADAMS虚拟样机模型,并开展静力学性能仿真分析,验证了刚度数学模型的正确性。最后,建立了驱动器的动力学模型,通过Laplace变换得到了动力学系统的传递函数。频率特性分析结果表明,该柔性驱动器的稳定性良好。所设计的柔性驱动器体积小且质量小,能够在可穿戴外骨骼机器人驱动机构中应用。研究结果为机器人柔性驱动关节的设计提供了理论和技术参考。

关键词: 柔性驱动器可重构变刚度动力学模型    
Abstract:

Compliant actuators can achieve safe interaction between robots and humans due to their inherent flexibility, and have strong environmental adaptability. To meet the requirements of exoskeleton robots for joint flexibility and variable stiffness characteristics, a reconfigurable variable stiffness compliant actuator was designed, which could achieve reconstruction by changing the geometric parameters, materials and quantity of elastic components, and achieve variable stiffness within an adjustable range by adjusting the radial preload. Firstly, based on the transmission principle of a zero-length frame four-bar mechanism, a stiffness mathematical model of the variable stiffness compliant actuator was established, and the influence of the number of flexible branches and the stiffness and preload of elastic components on the output torque and stiffness of the actuator was analyzed. Then, an ADAMS virtual prototype model of the actuator was established, and the statics performance simulation analysis was carried out to verify the correctness of the stiffness mathematical model. Finally, the dynamics model of the actuator was established and the transfer function of the dynamics system was obtained through Laplace transform. The frequency characteristics analysis results indicated that the stability of the compliant actuator was good. The designed compliant actuator had a small volume and small mass, which could be applied in the driving mechanism of wearable exoskeleton robots. The research results provide theoretical and technical references for the design of compliant driving joints in robots.

Key words: compliant actuator    reconfigurable    variable stiffness    dynamics model
收稿日期: 2022-09-23 出版日期: 2023-05-06
CLC:  TH 122  
基金资助: 国家留学基金委资助项目(201908140056);山西省研究生教育创新项目(2022Y603)
通讯作者: 秦慧斌     E-mail: dwjttt@163.com;qhbsss@163.com
作者简介: 段韦婕(1998—),女,山西长治人,硕士生,从事外骨骼机器人柔性驱动关节研究,E-mail: dwjttt@163.com,https://orcid.org/0009-0009-0288-2610
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
段韦婕
秦慧斌
刘荣
李中一
白绍平

引用本文:

段韦婕,秦慧斌,刘荣,李中一,白绍平. 可重构变刚度柔性驱动器的设计与性能分析[J]. 工程设计学报, 2023, 30(2): 262-270.

Weijie DUAN,Huibin QIN,Rong LIU,Zhongyi LI,Shaoping BAI. Design and performance analysis of reconfigurable variable stiffness compliant actuator[J]. Chinese Journal of Engineering Design, 2023, 30(2): 262-270.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.028        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/262

图1  变刚度柔性驱动器爆炸视图1—输入法兰外壳; 2—输入轴轴承; 3—径向调节外壳; 4—盖体; 5—滑轮轴; 6—滑轮; 7—径向调节滑轮; 8—径向调节锥齿轮; 9—弹性元件; 10—径向调节滑块; 11—径向调节伞齿轮; 12—输出轴; 13—轴套; 14—输出轴轴承; 15—输入法兰。
图2  变刚度柔性驱动器内部视图
图3  单个柔性分支的变刚度原理
图4  预紧力径向调节原理
参数数值
l0/mm80
l1/mm10~20
l3/mm34
ke/(N/mm)2.0
N3
θ/rad-1~1
表1  变刚度柔性驱动器的结构参数
图5  变刚度柔性驱动器输出扭矩随偏转角度及预紧力的变化情况
图6  变刚度柔性驱动器刚度随偏转角度及预紧力的变化情况
图7  变刚度柔性驱动器弹性势能随偏转角度及预紧力的变化情况
参数数值
直径/mm2
密度/(kg/mm3)1.0×10-6
弹性模量/(N/mm2)50.955
刚度比1
初始载荷/N7.5
阻尼比0.02
表2  ADAMS软件中弹性元件的参数设定
图8  变刚度柔性驱动器输出扭矩随偏转角度的变化曲线对比
图9  变刚度柔性驱动器的动力学模型
参数数值
负载等效转动惯量Ip/(kg·m2)1.784×10-3
电机等效转动惯量Im/(kg·m2)1.1×10-7
减速器等效转动惯量Ig/(kg·m2)6×10-8
VSM等效转动惯量Ivsm/(kg·m2)3×10-5
负载阻尼系数Bp/(Nms/rad)
电机阻尼系数Bm/(Nms/rad)3.96×10-6
VSM阻尼系数Bvsm/(Nms/rad)0.02
负载质量mp/kg0.080 43
电机输出力矩Tm/Nm
VSM输出扭矩Tp/Nm
负载连杆长度lp/m0.062 26
减速器传动比i1∶63
减速器效率η0.7
表3  变刚度柔性驱动器的动力学参数
平均刚度Ka/(Nm/rad)特征方程的根
2-5.605±33.432j
5-5.605±52.908j
10-5.605±74.846j
表4  变刚度柔性驱动器动力学系统传递函数的极点
图10  变刚度柔性驱动器动力学系统的Nyquist图
图11  变刚度柔性驱动器动力学系统的Bode图
图12  可穿戴柔性驱动肘关节的数字样机和物理样机
图13  柔性驱动肘关节穿戴试验现场
1 ZHU Y H, WU Q C, CHEN B, et al. Design and evaluation of a novel torque-controllable variable stiffness actuator with reconfigurability[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(1): 292-303.
2 BAO G J, PAN L F, FANG H, et al. Academic review and perspectives on robotic exoskeletons[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(11): 2294-2304.
3 徐晨阳,张建斌,陈伟海,等.绳驱动上肢外骨骼康复机器人穿戴机构设计[J].机器人,2021,43(4):463-472.
XU C Y, ZHANG J B, CHEN W H, et al. Design of the fixation mechanism for a cable-driven upper-limb exoskeleton rehabilitation robot[J]. Robot, 2021, 43(4): 463-472.
4 曲祥旭,曹东兴,张姗.一种扭簧变刚度柔性关节的设计与研究[J].机械工程学报,2021,57(13):114-123. doi:10.3901/jme.2021.13.114
QU X X, CAO D X, ZHANG S. Design and research of compliant joint with variable stiffness of torsion spring[J]. Journal of Mechanical Engineering, 2021, 57(13): 114-123.
doi: 10.3901/jme.2021.13.114
5 VANDERBORGHT B, ALBU-SCHAEFFER A, BICCHI A, et al. Variable impedance actuators: a review[J]. Robotics and Autonomous Systems, 2013, 61(12): 1601-1614.
6 LIU Y W, CUI S P, SUN Y J. Mechanical design and analysis of a novel variable stiffness actuator with symmetrical pivot adjustment[J]. Frontiers of Mechanical Engineering, 2021, 16(4): 711-725.
7 BRAUN D J, CHALVET V, CHONG T, et al. Variable stiffness spring actuators for low-energy-cost human augmentation[J]. IEEE Transactions on Robotics, 2019, 35(6): 1435-1449.
8 郭俊改.一体化可变刚度旋转型机器人关节结构设计与分析[D].天津:河北工业大学,2021:2-10.
GUO J G. Design and analysis of joint structure of integrated variable stiffness rotating robot[D]. Tianjin: Hebei University of Technology, 2021: 2-10.
9 JAFARI A, TSAGARAKIS N G, CALDWELL D G. A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS)[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 355-365.
10 SUN J T, GUO Z, ZHANG Y B, et al. A novel design of serial variable stiffness actuator based on an Archimedean spiral relocation mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5): 2121-2131.
11 WOLF S, FEENDERS J. Modeling and benchmarking energy efficiency of variable stiffness actuators on the example of the DLR FSJ [C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Oct. 9-14, 2016.
12 史延雷,张小俊,张明路.主-被动复合变刚度柔性关节设计与分析[J].机械工程学报,2018,54(3):55-62. doi:10.3901/jme.2018.03.055
SHI Y L, ZHANG X J, ZHANG M L. Design and analysis of the active‒passive composite compliant joint with variable stiffness[J]. Journal of Mechanical Engineering, 2018, 54(3): 55-62.
doi: 10.3901/jme.2018.03.055
13 CHOI J, HONG S, LEE W, et al. A robot joint with variable stiffness using leaf springs[J]. IEEE Transactions on Robotics, 2011, 27(2): 229-238.
14 吴瑞德,常英珂,陈小松,等.基于形状记忆合金的分离装置驱动机构研究[J].火工品,2020,196(5):10-13. doi:10.3969/j.issn.1003-1480.2020.05.003
WU R D, CHANG Y K, CHEN X S, et al. Research on driving mechanism of separation device based on shape memory alloy[J]. Initiators & Pyrotechnics, 2020, 196(5): 10-13.
doi: 10.3969/j.issn.1003-1480.2020.05.003
15 王文东,孙铜森,袁小庆,等.面向人机交互的机器人变 刚度柔性驱动器设计与分析[J].西北工业大学学报,2019,37(2):242-248. doi:10.1051/jnwpu/20193720242
WANG W D, SUN T S, YUAN X Q, et al. Design and analysis of variable flexible actuator for human-robot interaction[J]. Journal of Northwestern Polytechnical University, 2019, 37(2): 242-248.
doi: 10.1051/jnwpu/20193720242
16 LI Z Y, BAI S P. A novel revolute joint of variable stiffness with reconfigurability[J]. Mechanism and Machine Theory, 2019, 133: 720-736.
17 BECKERLE P, VERSTRATEN T, MATHIJSSENC G. Series and parallel elastic actuation: influence of operating positions on design and control[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1): 521-529.
18 LI Z Y, BAI S P, MADSEN O, et al. Design, modeling and testing of a compact variable stiffness mechanism for exoskeletons[J]. Mechanism and Machine Theory, 2020, 151: 103905.
19 高康平,展梓奎,焦生杰,等.救援机器人柔性关节的设计与稳定性分析[J].机械科学与技术,2020,39(8):1191-1195.
GAO K P, ZHAN Z K, JIAO S J, et al. Design and stability analysis of compliant joint of rescue robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1191-1195.
20 刘艳立.变刚度柔顺关节的设计与研究[D].北京:中国石油大学,2018:45-48.
LIU Y L. Design and research on variable stiffness of compliant joint[D]. Beijing: China University of Petroleum, 2018: 45-48.
[1] 金洪杨,岳龙旺,刘景达,郑卫卫,赵朝,徐嘉辉. 基于散粒体阻塞机理的变刚度柔性机械臂研究[J]. 工程设计学报, 2023, 30(4): 449-455.
[2] 张姚,祝效华,董亮亮. 弱刚性机匣橡胶减振柔性夹具研究[J]. 工程设计学报, 2022, 29(5): 587-594.
[3] 曹恩国, 王刚, 王琨, 高阳. 基于弹性装置驱动的外骨骼助行效能评价[J]. 工程设计学报, 2021, 28(4): 480-488.
[4] 刘晓瑜, 田颖, 张明路. 水下机械手动力学研究综述[J]. 工程设计学报, 2021, 28(4): 389-398.
[5] 吴耀东, 李保坤, 韩迎鸽, 刘向阳, 刘坤. 新型微纳测头刚度模型及变刚度特性分析[J]. 工程设计学报, 2018, 25(6): 711-717.
[6] 魏春雨, 蔡月, 刘明贺, 张琦, 贾乾忠. 新型车载医疗救护隔振平台设计及仿真[J]. 工程设计学报, 2018, 25(5): 532-538.
[7] 王杰, 钱利勤, 陈新龙, 孙巧雷, 邓自强, 冯定. 自动猫道起升系统动力学模型与分析[J]. 工程设计学报, 2016, 23(5): 437-443,460.
[8] 毛君, 董先瑞, 谢苗, 闫江龙, 李翠. 智能立体停车位框架的模态分析[J]. 工程设计学报, 2016, 23(1): 54-59,81.
[9] 周冬冬, 王国栋, 肖聚亮, 洪鹰. 新型模块化可重构机器人设计与运动学分析[J]. 工程设计学报, 2016, 23(1): 74-81.
[10] 黄尚兵, 金光, 安源. 凸轮机构两质量动力学模型的运动误差及接触力分析[J]. 工程设计学报, 2013, 20(3): 250-253.
[11] 幸芦笙, 欧阳兆彰, 王大承. 可调阻尼油气式减震器匹配整车平顺性的仿真分析[J]. 工程设计学报, 2007, 14(6): 468-473.
[12] 潘柏松, 龚惠玲. 注塑模抽芯机构可重构设计方法[J]. 工程设计学报, 2007, 14(4): 290-294.