Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (5): 587-594    DOI: 10.3785/j.issn.1006-754X.2022.00.068
建模、仿真、分析与决策     
弱刚性机匣橡胶减振柔性夹具研究
张姚(),祝效华(),董亮亮
西南石油大学 机电工程学院,四川 成都 610500
Research on rubber damping flexible fixture for weakly rigid casing
Yao ZHANG(),Xiao-hua ZHU(),Liang-liang DONG
School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(4205 KB)   HTML
摘要:

薄壁机匣的径向刚度低,在加工过程中易出现颤振,影响工件表面加工质量和加工效率。因此,设计了一种橡胶减振柔性夹具,其可大面积地支撑工件内壁,从而提高工件的加工刚度。建立了工件?夹具系统等效动力学模型,通过机匣铣削实验验证了模型的准确性。对比分析了橡胶减振柔性夹具与传统夹具的减振性能,研究了铣削力加载频率、压板压力、T形压板压力和推动块压力对工件?夹具系统的振动影响。结果表明:工件在采用减振夹具工况下加速度有效值相较于采用传统夹具减小了43.33%;采用橡胶减振柔性夹具后,工件可以避开400~900 Hz范围内剧烈振动的频率区间,振动幅度大大减小;随着压板压力的增大,工件加速度有效值先减小后增大;针对不同高度工件,应采用不同的压板压力,以减小加工过程中工件的振动;在实际加工中,T形压板压力应超过3.56 MPa,推动块压力应超过0.26 MPa,即液压缸推力超过20 kN。研究结果对橡胶减振柔性夹具的现场应用具有重要的指导意义。

关键词: 机匣薄壁件铣削振动减振夹具动力学模型    
Abstract:

Because of the low radial stiffness of the thin-walled casing, chatter is easy to occur during machining, which affects the machining quality and efficiency of the workpiece surface. Therefore, a rubber damping flexible fixture was designed, which could support the inner wall of the workpiece in a large area, thereby improving the processing stiffness of the workpiece. An equivalent dynamics model of workpiece-fixture system was established, and the accuracy of the model was verified by the milling experiment of the casing. The vibration reduction performances of rubber damping flexible fixture and traditional fixture were compared and analyzed. The influence of milling force loading frequency, pressure of platen, pressure of T-shaped platen and pressure of pushing block on the vibration of workpiece-fixture system was studied. The results showed that the acceleration effective value of the workpiece under the working condition with damping fixture was reduced by 43.33% compared with the traditional fixture; with rubber damping flexible fixture, the workpiece could avoid the frequency range of violent vibration in the range of 400-900 Hz, and the vibration amplitude was greatly reduced; with the increase of the pressure of platen, the acceleration effective value of the workpiece decreased first and then increased; for workpieces with different heights, different pressures of platen should be used to reduce the vibration of workpieces during processing; in actual processing, the pressure of T-shaped platen should exceed 3.56 MPa, and the pressure of pushing block should exceed 0.26 MPa, that was, the thrust of hydraulic cylinder should exceed 20 kN. The research result has important guiding significance for the field application of rubber damping flexible fixture.

Key words: thin-walled casing    milling vibration    damping clamp    dynamics model
收稿日期: 2021-11-01 出版日期: 2022-11-02
CLC:  TH 164  
基金资助: 四川省科技计划资助项目(2019YFG0380)
通讯作者: 祝效华     E-mail: 1623977166@qq.com;zxhth113@163.com
作者简介: 张 姚(1996—),男,四川内江人,硕士,从事薄壁机匣加工振动研究,E-mail:1623977166@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张姚
祝效华
董亮亮

引用本文:

张姚,祝效华,董亮亮. 弱刚性机匣橡胶减振柔性夹具研究[J]. 工程设计学报, 2022, 29(5): 587-594.

Yao ZHANG,Xiao-hua ZHU,Liang-liang DONG. Research on rubber damping flexible fixture for weakly rigid casing[J]. Chinese Journal of Engineering Design, 2022, 29(5): 587-594.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.068        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I5/587

图1  橡胶减振柔性夹具的结构
图2  天然橡胶应力—应变关系曲线
图3  机匣实际结构及简化后结构
图4  工件-夹具系统等效动力学模型
图5  机匣铣削区域
图6  机匣铣削振动检测流程
图7  工件加速度测试值与仿真值的对比
图8  传统夹具的结构
图9  工件-传统夹具等效动力学模型
图10  采用传统夹具和减振夹具工况下工件加速度响应曲线
图11  不同铣削力加载频率下工件加速度曲线
图12  不同铣削加载频率下工件加速度有效值
图13  不同压板压力下工件加速度有效值
图14  不同压板压力下工件内壁接触应力
图15  不同高度工件在不同压板压力下的加速度有效值
机匣高度/mm压板压力/MPa
3000.063 1~0.082 0
400,5000.044 2~0.082 0
600,700,8000.025 2~0.063 1
表 1  对应于不同机匣高度的压板压力建议值
图16  不同T形压板压力下工件加速度有效值
图17  不同推动块压力下工件加速度有效值
1 ARNAUD L, GONZALO O, SEGUY S, et al. Simulation of low rigidity part machining applied to thin-walled structures[J]. International Journal of Advanced Manufacturing Technology, 2011, 54(5/8): 479-488. doi:10.1007/s00170-010-2976-9
doi: 10.1007/s00170-010-2976-9
2 张明亮,张德远,刘佳佳,等.钛合金薄壁件高速超声椭圆振动铣削机理和试验[J].北京航空航天大学学报,2019,45(8):1606-1612.
ZHANG Ming-liang, ZHANG De-yuan, LIU Jia-jia, et al. Mechanism and experiment of high-speed ultrasonic elliptical vibration milling of thin-walled titanium alloy parts[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1606-1612.
3 张明亮,姜兴刚,刘佳佳,等.钛合金超声椭圆振动铣削参数对切削力的影响[J].电加工与模具,2017(6):39-41. doi:10.3969/j.issn.1009-279X.2017.06.010
ZHANG Ming-liang, JIANG Xing-gang, LIU Jia-jia, et al. Influence of ultrasonic elliptical vibration milling parameters with titanium alloy on the cutting force[J]. Electromachining & Mould, 2017(6): 39-41.
doi: 10.3969/j.issn.1009-279X.2017.06.010
4 CAMPA F J, DE LOPEZ L N L, CELAYA A. Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams[J]. International Journal of Machine Tools and Manufacture, 2011, 51(1): 43-53. doi:10.1016/j.ijmachtools.2010.09.008
doi: 10.1016/j.ijmachtools.2010.09.008
5 WAN M, GAO T-Q, FENG J, et al. On Improving chatter stability of thin-wall milling by prestressing[J]. Journal of Materials Processing Technology, 2019, 264: 32-44. doi:10.1016/j.jmatprotec.2018.08.042
doi: 10.1016/j.jmatprotec.2018.08.042
6 ZHANG X, YU T, WANG W, et al. Three-dimensional process stability prediction of thin-walled workpiece in milling operation[J]. Machining Science and Technology, 2016, 20(3): 406-424. doi:10.1080/10910344.2016. 1191027
doi: 10.1080/10910344.2016. 1191027
7 LI Z, SUN Y, GUO D. Chatter prediction utilizing stability lobes with process damping in finish milling of titanium alloy thin-walled workpiece[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/12): 2663-2674. doi:10.1007/s00170-016-9834-3
doi: 10.1007/s00170-016-9834-3
8 刘晓晨,陈坚,崔巍,等.固体火箭发动机振动夹具设计及动态特性分析[J].强度与环境,2020,47(2):56-63.
LIU Xiao-chen, CHEN Jian, CUI Wei, et al. Design and analysis of dynamic characteristics of vibration fixture with solid propellant rocket engine[J]. Structure & Environment Engineering, 2020, 47(2): 56-63.
9 王世辉,张昱,陈欣欣,等.固体火箭发动机振动试验夹具优化分析与研究[J].计算机测量与控制,2017,25(1): 221-223. doi:10.16526/j.cnki.11-4762/tp.2017.01.061
WANG Shi-hui, ZHANG Yu, CHEN Xin-xin, et al. Vibration test fixture optimization analysis and control for solid rocket motor[J]. Computer Measurement & Control, 2017, 25(1): 221-223.
doi: 10.16526/j.cnki.11-4762/tp.2017.01.061
10 AOYAMA T, KAKINUMA Y. Development of fixture devices for thin and compliant workpieces[J]. CIRP Annals, 2005, 54(1): 325-328. doi:10.1016/s0007-8506(07)60114-0
doi: 10.1016/s0007-8506(07)60114-0
11 崔惠婷,陈蔚芳,冯婷.装夹优化抑制薄壁件加工振动研究[J].组合机床与自动化加工技术,2016(5):138-142.
CUI Hui-ting, CHEN Wei-fang, FENG Ting. The study on vibration suppression for thin-walled parts based on fixture optimization[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(5): 138-142.
12 刘玉梅,姜兆亮,刘文平,等.基于薄板件装夹变形控制的夹紧点位置优化方法研究[J].组合机床与自动化加工技术,2011(7):23-25. doi:10.3969/j.issn.1001-2265.2011.07.007
LIU Yu-mei, JIANG Zhao-liang, LIU Wen-ping, et al. Research on clamping-point optimization based on control of the deformation in fixing thin-walled workpiece[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2011(7): 23-25.
doi: 10.3969/j.issn.1001-2265.2011.07.007
13 于金,刘成林,朱秀峰,等.薄壁件装夹位置优选方案有限元分析与实验研究[J].航空精密制造技术, 2013,49(6):30-32. doi:10.3969/j.issn.1003-5451.2013.06.008
YU Jin, LIU Cheng-lin, ZHU Xiu-feng, et al. Finite element analysis and experimental research for optimization scheme of thin-walled clamping location[J]. Aviation Precision Manufacturing Technology, 2013, 49(6): 30-32.
doi: 10.3969/j.issn.1003-5451.2013.06.008
14 TUYSUZ O, ALTINTAS Y. Time-domain modeling of varying dynamic characteristics in thin-wall machining using perturbation and reduced-order substructuring methods[J]. Journal of Manufacturing Science and Engineering, 2018, 140(1): 11-15. doi:10.1115/1. 4038000
doi: 10.1115/1. 4038000
15 王晓静,张松,贾秀杰.航空发动机整体机匣铣‒车复合加工工艺优化[J].计算机集成制造系统,2011,17(7): 1460-1465.
WANG Xiao-jing, ZHANG Song, JIA Xiu-jie. Milling-turning processing optimization for aircraft engine casing[J]. Computer Integrated Manufacturing Systems, 2011, 17(7): 1460-1465.
16 张壮志,孔啸,梁建光,等.铝合金曲面薄壁件柔性工装夹具的加工性能研究[J].组合机床与自动化加工技术, 2013(6):116-118. doi:10.3969/j.issn.1001-2265.2013.06.034
ZHANG Zhuang-zhi, KONG Xiao, LIANG Jian-guang, et al. Research on processing performance of the flexible clamp system for aluminum alloy thin-walled work piece with curved surface[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013(6): 116-118.
doi: 10.3969/j.issn.1001-2265.2013.06.034
17 杨毅青,龚继文.基于电磁感应原理的薄壁件铣削振动抑制[J].振动.测试与诊断,2015,35(3):429-433.
YANG Yi-qing, GONG Ji-wen. Milling vibration suppression of thin-walled structure based on electromagnetic induction[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(3): 429-433.
18 SALLESE L, INNOCENTI G, GROSSI N, et al. Mitigation of chatter instabilities in milling using an active fixture with a novel control strategy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/12): 2771-2787. doi: 10.1007/s00170-016-9831-6 .
doi: 10.1007/s00170-016-9831-6
19 MA J, ZHANG D, WU B, et al. Stability improvement and vibration suppression of the thin-walled workpiece in milling process via magnetorheological fluid flexible fixture[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5/8): 1231-1242. doi:10.1007/s00170-016-8833-8
doi: 10.1007/s00170-016-8833-8
20 JIANG X, ZHAO G, LU W. Vibration suppression of complex thin-walled workpiece based on magnetorheological fixture[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(3/4): 1043-1055. doi:10.1007/s00170-019-04612-2
doi: 10.1007/s00170-019-04612-2
21 KOLLURU K, AXINTE D. Novel ancillary device for minimising machining vibrations in thin wall assemblies[J]. International Journal of Machine Tools and Manufacture, 2014, 85: 79-86. doi:10.1016/j.ijmachtools. 2014.05.007
doi: 10.1016/j.ijmachtools. 2014.05.007
22 许开州,詹世涛,刘子娟,等.大长径比薄壁燃烧室壳体铣削加工振动分析与控制[J].上海航天,2014,31 (1):10-14. doi:10.3969/j.issn.1006-1630.2014.z1.003
XU Kai-zhou, ZHAN Shi-tao, LIU Zi-juan, et al. Milling vibration analysis and control of a large length-diameter ratio and thin-walled combustor shell[J]. Aerospace Shanghai, 2014, 31 (1): 10-14.
doi: 10.3969/j.issn.1006-1630.2014.z1.003
[1] 段韦婕,秦慧斌,刘荣,李中一,白绍平. 可重构变刚度柔性驱动器的设计与性能分析[J]. 工程设计学报, 2023, 30(2): 262-270.
[2] 刘晓瑜, 田颖, 张明路. 水下机械手动力学研究综述[J]. 工程设计学报, 2021, 28(4): 389-398.
[3] 曹恩国, 王刚, 王琨, 高阳. 基于弹性装置驱动的外骨骼助行效能评价[J]. 工程设计学报, 2021, 28(4): 480-488.
[4] 魏春雨, 蔡月, 刘明贺, 张琦, 贾乾忠. 新型车载医疗救护隔振平台设计及仿真[J]. 工程设计学报, 2018, 25(5): 532-538.
[5] 王杰, 钱利勤, 陈新龙, 孙巧雷, 邓自强, 冯定. 自动猫道起升系统动力学模型与分析[J]. 工程设计学报, 2016, 23(5): 437-443,460.
[6] 毛君, 董先瑞, 谢苗, 闫江龙, 李翠. 智能立体停车位框架的模态分析[J]. 工程设计学报, 2016, 23(1): 54-59,81.
[7] 黄尚兵, 金光, 安源. 凸轮机构两质量动力学模型的运动误差及接触力分析[J]. 工程设计学报, 2013, 20(3): 250-253.
[8] 幸芦笙, 欧阳兆彰, 王大承. 可调阻尼油气式减震器匹配整车平顺性的仿真分析[J]. 工程设计学报, 2007, 14(6): 468-473.