Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 254-261    DOI: 10.3785/j.issn.1006-754X.2023.00.024
整机和系统设计     
基于数字孪生的光学位移台交互控制系统
徐哲1,2(),孙树峰1,2(),张兴波1,2,王茜1,2,张丰云1,2,王萍萍1,2,谢章伟1,2,张羽1,2,刘纪新3,孙维丽3,曹爱霞3
1.青岛理工大学 机械与汽车工程学院,山东 青岛 266520
2.山东省激光绿色高效智能制造工程技术研究中心,山东 青岛 266520
3.青岛黄海学院 智能制造学院,山东 青岛 266520
Interactive control system of optical displacement stage based on digital twin
Zhe XU1,2(),Shufeng SUN1,2(),Xingbo ZHANG1,2,Xi WANG1,2,Fengyun ZHANG1,2,Pingping WANG1,2,Zhangwei XIE1,2,Yu ZHANG1,2,Jixin LIU3,Weili SUN3,Aixia CAO3
1.School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
2.Shandong Research Center of Laser Green and High Efficiency Intelligent Manufacturing Engineering Technology, Qingdao 266520, China
3.School of Intelligent Manufacturing, Qingdao Huanghai University, Qingdao 266520, China
 全文: PDF(2432 KB)   HTML
摘要:

为解决自建激光并行加工实验平台因设备安装位置隐蔽、难以加装辅助装置等而造成实验操作不便、设备运行状态监测困难和交互性差的问题,以实验平台中单个光学位移台为例,利用Unity引擎设计了一种基于数字孪生技术的交互控制系统。该交互控制系统采用MQTT(message queuing telemetry transport,消息队列遥测传输)通信协议,利用服务器中转数据的方式完成跨软件间的信息交互。光学位移台的Kinesis控制软件和Unity引擎中的虚拟控制面板作为MQTT通信中的客户端,共同承担订阅者和发布者的角色。光学位移台的数字孪生模型根据数据信息对物理实体的运动状态进行实时映射,用户通过Kinesis控制软件或虚拟控制面板完成对物理实体和数字孪生模型的同步交互控制。采取引用.dll文件对Kinesis控制软件进行二次开发,调用Kinesis控制软件运动控制类的方法完成对光学位移台的运动控制,并将运动数据变量设置为高精度的float型和decimal型,确保数据精度不丢失。选取10组实际加工数据对交互控制系统运行的延时性、同步性进行测试。结果显示,Kinesis控制软件端数据发布耗时和Unity引擎端数据订阅耗时分别控制在20 ms和10 ms内。所设计的系统能够较好地保证数字孪生模型与物理实体间同步控制的一致性、动作映射的实时性,实现了光学位移台运动状态的可视化监测功能。此外,设置的运动数据类型可满足微米级的信息传递,保证了光学位移台使用时的精度要求;同时虚拟控制面板各功能正常运行,提升了光学位移台控制的便利性。

关键词: 数字孪生交互控制光学位移台运动监测    
Abstract:

In order to solve the problems of inconvenience in experimental operation, difficulty in monitoring equipment operation status and poor interactivity caused by concealed installation position and difficulty in installing auxiliary devices on the self-built laser parallel processing experimental platform, taking a single optical displacement stage in the experimental platform as an example, an interactive control system based on digital twin technology was designed by using Unity engine. This interactive control system used MQTT (message queuing telemetry transport) communication protocol protocol to complete the cross-software information interaction by using the server to transfer data. The Kinesis control software of optical displacement stage and the virtual control panel in Unity engine served as clients in MQTT communication, acting as subscribers and publishers. The digital twin model of the optical displacement stage performed real-time mapping of the motion state of its physical entity based on data information. Users completed synchronous interactive control of the physical entity and the digital twin model through the Kinesis control software or virtual control panel. The secondary development of Kinesis control software was carried out by referencing.dll file, and the motion control class of Kinesis control software was called to complete the motion control of the optical displacement stage. The motion data variables were set to high-precision float type and decimal type to ensure that the data precision was not lost. Ten groups of actual processing data were selected to test the operation latency and synchronization of the interactive control system. The results showed that the data publishing time on the Kinesis control software and the data subscription time on the Unity engine were controlled within 20 ms and 10 ms, respectively. The designed system can better ensure the consistency of synchronous control and real-time action mapping between the digital twin model and the physical entity, which achieves the visual monitoring function of the motion state of the optical displacement stage. In addition, the motion data type can meet the micron level information transmission, ensuring the accuracy requirements of the optical displacement stage. At the same time, the functions of virtual control panel run normally, which improves the convenience of the optical displacement stage control.

Key words: digital twin    interactive control    optical displacement stage    motion monitoring
收稿日期: 2022-07-27 出版日期: 2023-05-06
CLC:  TH 136  
基金资助: 国家自然科学基金资助项目(51775289);高等学校学科创新引智计划(D21017);山东省重点研发计划(2019GGX104097);青岛西海岸新区2020年度科技源头创新专项(2020-103)
通讯作者: 孙树峰     E-mail: 279091987@qq.com;sunshufeng@qut.ed.cn
作者简介: 徐 哲(1994—),男,山东淄博人,硕士生,从事数字孪生技术研究,E-mail: 279091987@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐哲
孙树峰
张兴波
王茜
张丰云
王萍萍
谢章伟
张羽
刘纪新
孙维丽
曹爱霞

引用本文:

徐哲,孙树峰,张兴波,王茜,张丰云,王萍萍,谢章伟,张羽,刘纪新,孙维丽,曹爱霞. 基于数字孪生的光学位移台交互控制系统[J]. 工程设计学报, 2023, 30(2): 254-261.

Zhe XU,Shufeng SUN,Xingbo ZHANG,Xi WANG,Fengyun ZHANG,Pingping WANG,Zhangwei XIE,Yu ZHANG,Jixin LIU,Weili SUN,Aixia CAO. Interactive control system of optical displacement stage based on digital twin[J]. Chinese Journal of Engineering Design, 2023, 30(2): 254-261.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.024        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/254

图1  基于数字孪生的光学位移台交互控制系统总体框架
图2  光学位移台数字孪生模型
性能指标数值
最小步长/μm1
重复定位精度/μm5
反冲间隙/μm<6
响应时间/ms<50
表1  数字孪生控制系统的性能要求
图3  实体环境中光学位移台的线路连接
图4  设备端部分服务器连接测试程序
图5  Unity引擎端的订阅与发布方法
图6  光学位移台的运动精度测试数据
图7  虚拟控制面板可视化界面
图8  光学位移台交互控制程序流程
图9  光学位移台交互控制系统功能测试现场
组别数据发布耗时数据订阅耗时
119.177.10
215.179.03
316.008.52
418.326.93
515.866.52
617.546.85
717.098.05
818.317.11
916.788.85
1018.036.18
表2  光学位移台交互控制系统数据传输耗时 (ms)
1 邵伟平,刘周林,郝永平,等.精密位移台的控制软件开发[J].机床与液压,2013,41(21):82-85. doi:10.3969/j.issn.1001-3881.2013.21.023
SHAO W P, LIU Z L, HAO Y P, et al. Development of control software for the precision displacement stage[J]. Machine Tool & Hydraulics, 2013, 41(21): 82-85.
doi: 10.3969/j.issn.1001-3881.2013.21.023
2 刘俊标,薛虹,顾文琪.微纳加工中的精密工件台技术[M].北京:北京工业大学出版社,2004:1-9.
LIU J B, XUE H, GU W Q. Precision worktable technology in micro nano machining[M]. Beijing: Beijing University of Technology Press, 2004: 1-9.
3 陶飞,刘蔚然,张萌,等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统,2019,25(1):1-18.
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
4 陶飞,马昕,胡天亮,等.数字孪生标准体系[J].计算机集成制造系统,2019,25(10):2405-2418.
TAO F, MA X, HU T L, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2405-2418.
5 胡伟飞,方健豪,刘飞香,等.基于数字孪生的掘锚一体机实时状态映射[J].湖南大学学报(自然科学版),2022,49(2):1-12.
HU W F, FANG J H, LIU F X, et al. Real-time state mirror-mapping for driving and bolting integration equipment based on digital twin[J]. Journal of Hunan University (Natural Sciences), 2022, 49(2): 1-12.
6 WILMA P, ANDREA C. Digital twin of stone sawing processes[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(1): 121-131.
7 QI Q L, TAO F, HU T L. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems, 2019, 58: 3-21.
8 林润泽,王行健,冯毅萍,等.基于数字孪生的智能装配机械臂实验系统[J].实验室研究与探索,2019,38(12):83-88. doi:10.3969/j.issn.1006-7167.2019.12.020
LIN R Z, WANG X J, FENG Y P, et al. Experimental system of intelligent assembly manipulator based on digital twin[J]. Research and Exploration in Laboratory, 2019, 38(12): 83-88.
doi: 10.3969/j.issn.1006-7167.2019.12.020
9 孙惠斌,潘军林,张纪铎,等.面向切削过程的刀具数字孪生模型[J].计算机集成制造系统,2019,25(6):1474-1480.
SUN H B, PAN J L, ZHANG J D, et al. Digital twin model for cutting tools in machining process[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1474-1480.
10 李聪波,孙鑫,侯晓博,等.数字孪生驱动的数控铣削刀具磨损在线监测方法[J].中国机械工程,2022,33(1):78-87. doi:10.3969/j.issn.1004-132X.2022.01.009
LI C B, SUN X, HOU X B, et al. Online monitoring method for NC milling tool wear by digital twin-driven[J]. China Mechanical Engineering, 2022, 33(1): 78-87.
doi: 10.3969/j.issn.1004-132X.2022.01.009
11 DEBROY T, ZHANG W, TURNER J, et al. Building digital twins of 3D printing machines[J]. Scripta Materialia, 2017, 135: 119-124.
12 CHEN W. Intelligent manufacturing production line data monitoring system for industrial internet of things[J]. Computer Communications, 2020, 151: 31-41.
13 陈勇,陈燚,裴植,等.基于文献计量的数字孪生研究进展分析[J].中国机械工程,2020,31(7):797-807. doi:10.3969/j.issn.1004-132X.2020.07.005
CHEN Y, CHEN Y, PEI Z, et al. Digital twin: recent development and future trend from bibliometrics perspective[J]. China Mechanical Engineering, 2020, 31(7): 797-807.
doi: 10.3969/j.issn.1004-132X.2020.07.005
14 吴雁,王晓军,何勇,等.数字孪生在制造业中的关键技术及应用研究综述[J].现代制造工程,2021(9):137-145.
WU Y, WANG X J, HE Y, et al. Review on the technology and application of digital twin in manufacturing industry[J]. Modern Manufacturing Engineering, 2021(9): 137-145.
15 龙玉江,李洵,舒彧,等.数字孪生技术的应用及进展[J].上海电力大学学报,2022,38(4):409-414. doi:10.3969/j.issn.2096-8299.2022.04.016
LONG Y J, LI X, SHU Y, et al. Application and progress of digital twin technology[J]. Journal of Shanghai University of Electric Power, 2022, 38(4): 409-414.
doi: 10.3969/j.issn.2096-8299.2022.04.016
16 TAO F, QI Q L, WANG L H, et al. Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: correlation and comparison[J]. Engineering, 2019, 5(4): 653-661.
17 曾林森.基于Unity3D的跨平台虚拟驾驶视景仿真研究[D].长沙:中南大学,2013:1-79.
ZENG L S. The coss-platform visual simulation research of virtual driving based on Unity3D[D]. Changsha: Central South University, 2013: 1-79.
18 李洋.基于消息队列遥测传输协议的智能家居消息中间件设计[J].计算机应用,2018,38(S1):162-164,217.
LI Y. Design of message oriented middleware in smart home based on message queuing telemetry transport protocol[J]. Journal of Computer Applications, 2018, 38(S1): 162-164, 217.
19 孔垂跃,陈羽,赵乾名.基于MQTT协议的配电物联网云边通信映射研究[J].电力系统保护与控制,2021,49(8):168-176. doi:10.19783/j.cnki.pspc.200775
KONG C Y, CHEN Y, ZHAO Q M. Research on cloud-side communication mapping of the distribution internet of things based on MQTT protocol[J]. Power System Protection and Control, 2021, 49(8): 168-176.
doi: 10.19783/j.cnki.pspc.200775
20 江献良,陈凌宇,郑杰基,等.基于数字孪生模型的直驱部件高精度控制方法[J].机械工程学报,2021,57(17):98-109. doi:10.3901/jme.2021.17.098
JIANG X L, CHEN L Y, ZHENG J J, et al. High-precision control method of direct drive components based on digital twin model[J]. Journal of Mechanical Engineering, 2021, 57(17): 98-109.
doi: 10.3901/jme.2021.17.098
21 蔡启航,王洁,史通,等.导弹装备分布式虚拟协同操作训练系统设计[J].传感器与微系统,2018,37(8):104-106.
CAI Q H, WANG J, SHI T, et al. Design of distributed virtual collaborative operation training system of missile equipment[J]. Transducer and Microsystem Technologies, 2018, 37(8): 104-106.
[1] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[2] 张旭辉,鞠佳杉,杨文娟,吕欣媛. 基于数字孪生的复杂矿用设备预测性维护系统[J]. 工程设计学报, 2022, 29(5): 643-650.
[3] 傅贵武, 王兴波, 田英. 基于五轴加工中心智能生产线的数字孪生应用研究[J]. 工程设计学报, 2021, 28(4): 426-432.
[4] 白仲航, 孙意为, 许彤, 丁满. 基于设计任务的概念设计中产品数字孪生模型的构建[J]. 工程设计学报, 2020, 27(6): 681-689.
[5] 王安邦, 孙文彬, 段国林. 基于数字孪生与深度学习技术的制造加工设备智能化方法研究[J]. 工程设计学报, 2019, 26(6): 666-674.