【主题栏目】数字孪生 · 智能制造 |
|
|
|
|
基于数字孪生的激光加工零件表面温度监控系统的构建 |
谢章伟1,2( ),张兴波1,2,徐哲1,2,张羽2,张丰云1,2,王茜1,2,王萍萍2,孙树峰1,2( ),王海涛1,刘纪新3,孙维丽3,曹爱霞3 |
1.青岛理工大学 机械与汽车工程学院,山东 青岛 266520 2.山东省激光绿色高效智能制造工程技术研究中心,山东 青岛 266520 3.青岛黄海学院 智能制造学院,山东 青岛 266555 |
|
Construction of surface temperature monitoring system for laser machining parts based on digital twin |
Zhangwei XIE1,2( ),Xingbo ZHANG1,2,Zhe XU1,2,Yu ZHANG2,Fengyun ZHANG1,2,Xi WANG1,2,Pingping WANG2,Shufeng SUN1,2( ),Haitao WANG1,Jixin LIU3,Weili SUN3,Aixia CAO3 |
1.School of Mechanical & Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China 2.Shandong Research Center of Laser Green and High Efficiency Intelligent Manufacturing Engineering Technology, Qingdao 266520, China 3.School of Intelligent Manufacturing, Qingdao Huanghai University, Qingdao 266555, China |
引用本文:
谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
Zhangwei XIE,Xingbo ZHANG,Zhe XU,Yu ZHANG,Fengyun ZHANG,Xi WANG,Pingping WANG,Shufeng SUN,Haitao WANG,Jixin LIU,Weili SUN,Aixia CAO. Construction of surface temperature monitoring system for laser machining parts based on digital twin[J]. Chinese Journal of Engineering Design, 2023, 30(4): 409-418.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.036
或
https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/409
|
1 |
BOEGELEIN T, LOUVIS E, DAWSON K, et al. Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel[J]. Materials Characterization, 2016, 112: 30-40.
|
2 |
ZHANG A, QI B, SHI B, et al. Effect of curvature radius on the residual stress of thin-walled parts in laser direct forming[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1/4): 81-88.
|
3 |
BARTLETT J L, CROOM B P, BURDICK J, et al. Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation[J]. Additive Manufacturing, 2018, 22: 1-12.
|
4 |
RIVEIRO A, QUINTERO F, VAL J D, et al. Laser cutting using off-axial supersonic rectangular nozzles[J]. Precision Engineering, 2018, 51: 78-87.
|
5 |
SALAMA A, LI L, MATIVENGA P, et al. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites[J]. Applied Physics A, 2016, 122(2): 73.
|
6 |
PRIYANKA J, AMIT S. Simultaneous optimization of kerf taper and heat affected zone in Nd-YAG laser cutting of Al 6061-T6 sheet using hybrid approach of grey relational analysis and fuzzy logic[J]. Precision Engineering, 2018, 54: 302-313.
|
7 |
KOLLECK R, VOLLMER R, VEIT R. Investigation of a combined micro-forming and punching process for the realization of tight geometrical tolerances of conically formed hole patterns[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1): 331-334.
|
8 |
ZHU Z, DHOKIA V G, NASSEHI A, et al. A review of hybrid manufacturing processes‒state of the art and future perspectives[J]. International Journal of Computer Integrated Manufacturing, 2013, 26(7): 596-615.
|
9 |
RAZA N, MEHMOOD I, RAFIUDDIN H, et al. Numerical simulation of added mass determination of standard ellipsoids[C]//Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Jan. 9-12, 2012.
|
10 |
LEI J, LI D L, ZHOU Y L, et al. Optimization and acceleration of flow simulations for CFD on CPU/GPU architecture[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(7): 290.
|
11 |
HUANG J, CHEN J, XU W W, et al. A survey on fast simulation of elastic objects[J]. Frontiers of Computer Science, 2019, 13(3): 443-459.
|
12 |
BRANDVIK T, PULLAN G. Acceleration of a 3D Euler solver using commodity graphics hardware[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 7-10, 2008.
|
13 |
THIBAULT J C, SENOCAK I. Accelerating incompressible flow computations with a Pthreads-CUDA implementation on small-footprint multi-GPU platforms[J]. Journal of Supercomputing, 2012, 59(2): 693-719.
|
14 |
MORISITA H, INAKAGATA K, OSANA Y, et al. Implementation and evaluation of an arithmetic pipeline on FLOPS-2D: multi-FPGA system[J]. ACM Sigarch Computer Architecture News, 2011, 38(4): 8-13.
|
15 |
SANCHEZ-ROMAN D, SUTTER G, LOPEZ-BUEDO S, et al. High-level languages and floating-point arithmetic for FPGA-based CFD simulations[J]. IEEE Design & Test of Computers, 2011, 28(4): 28-37.
|
16 |
GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems[M]//Transdisciplinary Perspectives on Complex Systems, Cham: Springer, 2017: 85-113.
|
17 |
TAO F, HE Z, LIU A, et al. Digital twin in industry: state-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405-2415.
|
18 |
TAO F, SUI F, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57(11/12): 3935-3953.
|
19 |
LUO W, HU T, ZHANG C, et al. Digital twin for CNC machine tool: modeling and using strategy[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3): 1-12.
|
20 |
LUO W, HU T, YE Y, et al. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101974.
|
21 |
GOHARI H, BERRY C, BARARI A. A digital twin for integrated inspection system in digital manufacturing[J]. IFAC-PapersOnLine, 2019, 52(10): 182-187.
|
22 |
BOTKINA D, HEDLIND M, OLSSON B, et al. Digital twin of a cutting tool[J]. Procedia CIRP, 2018, 72: 215-218.
|
23 |
DEBROY T, ZHANG W, TURNER J, et al. Building digital twins of 3D printing machines[J]. Scripta Materialia, 2017, 135: 119-124.
|
24 |
CAI Y, STARLY B, COHEN P, et al. Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing[J]. Procedia Manufacturing, 2017, 10: 1031-1042.
|
25 |
SCAGLIONI B, FERRETTI G. Towards digital twins through object-oriented modelling: a machine tool case study[J]. IFAC-PapersOnLine, 2018, 51(2): 613-618.
|
26 |
LAI X N, WANG S, GUO Z G, et al. Designing a shape‒performance integrated digital twin based on multiple models and dynamic data: a boom crane example[J]. Journal of Mechanical Design, 2021, 143(7): 1-15.
|
27 |
RASHEED A, SAN O, KVAMSDAL T. Digital twin: values, challenges and enablers from a modeling perspective[J]. IEEE Access, 2020, 8: 21980-22012.
|
28 |
RUEDEN L V, MAYER S, SIFA R, et al. Combining machine learning and simulation to a hybrid modelling approach: current and future directions[C]//The 18th International Symposium on Intelligent Data Analysis (IDA), Bodenseeforum, Lake Constance, Apr. 27-29, 2020.
|
29 |
MAGARGLE R, JOHNSON L, MANDLOI P, et al. A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system[C]//Proceedings of the 12th International Modelica Conference. Prague, May 15-17, 2017.
|
30 |
WANG J, YE L, GAO R X, et al. Digital twin for rotating machinery fault diagnosis in smart manufacturing[J]. International Journal of Production Research, 2019, 57(12): 3920-3934.
|
31 |
SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec. 5-10, 2016.
|
32 |
曹仰杰,贾丽丽,陈永霞,等.生成式对抗网络及其计算机视觉应用研究综述[J].中国图象图形学报,2018,23(10):1433-1449. doi:10.11834/jig.180103 CAO Y J, JIA L L, CHEN Y X, et al. Review of computer vision based on generative adversarial networks[J]. Journal of Image and Graphics, 2018, 23(10): 1433-1449.
doi: 10.11834/jig.180103
|
33 |
SONG T A, CHOWDHURY S R, YANG F, et al. PET image super-resolution using generative adversarial networks[J]. Neural Networks, 2020, 125: 83-91.
|
34 |
MERTENS J, ZAMIR S. The value of two-person zero-sum repeated games with lack of information on both sides[J]. International Journal of Game Theory, 1971, 1(1): 39-64.
|
35 |
叶晨,关玮.生成式对抗网络的应用综述[J].同济大学学报(自然科学版),2020,48(4):591-601. YE C, GUAN W. A review of application of generative adversarial networks[J]. Journal of Tongji University (Natural Science), 2020, 48(4): 591-601.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|