Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (6): 711-717    DOI: 10.3785/j.issn.1006-754X.2018.06.013
建模、仿真、分析与决策     
新型微纳测头刚度模型及变刚度特性分析
吴耀东1, 李保坤1,2,3, 韩迎鸽4, 刘向阳1, 刘坤1
1. 安徽理工大学 机械工程学院, 安徽 淮南 232001;
2. 安徽理工大学 机械工程博士后科研流动站, 安徽 淮南 232001;
3. 广西省制造系统与先进制造技术重点实验室, 广西 桂林 530003;
4. 安徽理工大学 电气与信息工程学院, 安徽 淮南 232001
Analysis of stiffness model and variable stiffness characteristic of novel micro-nano probe
WU Yao-dong1, LI Bao-kun1,2,3, HAN Ying-ge4, LIU Xiang-yang1, LIU Kun1
1. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China;
2. Postdoctoral Research Station of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China;
3. Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Guilin 530003, China;
4. School of Electrical and information Engineering, Anhui University of Science and Technology, Huainan 232001, China
 全文: PDF(2397 KB)   HTML
摘要:

微纳测头是精密测量机的关键部件,其刚度特性直接影响坐标测量机的整体性能。基于压杆失稳原理,构造一种具有变刚度特性的新型微纳测头。利用压电装置驱动柔性机构变形以改变柔性支撑梁的轴向受力和横向刚度,从而改变约束支撑机构的整体刚度。综合考虑测头的刚度特性、结构稳定性和解耦性等因素,构造出基于十字交叉型悬臂梁支撑的变刚度微纳测头。利用最小势能原理构建微纳测头约束支撑机构的刚度模型,基于模型获得所需压电驱动力大小。通过有限元仿真得到测头刚度随压电驱动力变化的曲线。对比刚度理论计算值与仿真值,分别得到微纳测头约束支撑机构的轴向刚度及横向刚度的平均相对误差。仿真结果表明,建立的刚度理论模型具有较高的准确性。研究结果为该新型微纳测头的变刚度控制奠定了理论基础。

关键词: 微纳测头压杆失稳变刚度最小势能原理刚度模型    
Abstract:

The micro-nano probe is a key component of precision measuring machines. Its stiffness characteristics directly affect the overall performance of the coordinate measuring machine. Based on the principle of pressure rod instability, a novel micro-nano probe with variable stiffness characteristics was constructed. The piezoelectric device was used to drive the deformation of the flexible mechanism to change the axial force and lateral stiffness of the flexible support beam, and then the overall stiffness of the constrained supporting mechanism was varied. Considering the stiffness characteristics of the micro-nano probe, the structural stability and the decoupling, the variable stiffness probe based on the cross-cantilever beam support was established. The principle of minimum potential energy was used to derive the stiffness model of the constrained supporting mechanism of the micro-nano probe. Based on the above model the required piezoelectric drive force was obtained. The stiffness curve of the probe with respect to the piezoelectric driving force was described by employing the finite element simulation. Comparing stiffness theory calculated values and simulated values, the average relative error of the axial stiffness and lateral stiffness of the constrained supporting mechanism of the micro-nano probe were obtained. The simulation results showed that the established stiffness model had high accuracy. The result of the study laid a preliminary theoretical basis for the variable stiffness control of the novel micro-nano probe.

Key words: micro-nano probe    pressure rod instability    variable stiffness    principle of minimum potential energy    stiffness model
收稿日期: 2018-05-09 出版日期: 2018-12-28
CLC:  TH72  
基金资助:

国家自然科学基金资助项目(51605006);安徽省高等学校自然科学研究重点项目(KJ2015A121);广西省制造系统与先进制造技术重点实验室开放课题项目(17-259-05-013K)

通讯作者: 李保坤(1982-),男,安徽舒城人,副教授,博士,从事机构学与精密机械设计等研究,E-mail:libkmail@126.com,https//orcid.org/0000-0001-5413-4061     E-mail: libkmail@126.com
作者简介: 吴耀东(1993-),男,湖北黄石人,硕士生,从事柔顺机构及其在精密机械领域应用研究,E-mail:wuyaodong1993@126.com,https//orcid.org/0000-0002-3108-891X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴耀东
李保坤
韩迎鸽
刘向阳
刘坤

引用本文:

吴耀东, 李保坤, 韩迎鸽, 刘向阳, 刘坤. 新型微纳测头刚度模型及变刚度特性分析[J]. 工程设计学报, 2018, 25(6): 711-717.

WU Yao-dong, LI Bao-kun, HAN Ying-ge, LIU Xiang-yang, LIU Kun. Analysis of stiffness model and variable stiffness characteristic of novel micro-nano probe[J]. Chinese Journal of Engineering Design, 2018, 25(6): 711-717.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.06.013        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I6/711

[1] CLAVERLEY J D, LEACH R K. Development of a three-dimensional vibrating tactile probe for miniature CMMs[J]. Precision Engineering, 2013, 37(2):491-499.
[2] 黄强先,余惠娟,黄帅,等.微纳米三坐标测量机测头的研究进展[J].中国机械工程,2013,24(9):1264-1272. HUANG Qiang-xian, YU Hui-juan, HUANG Shuai, et al. Advances in probes of micro-nano coordinating measuring machine[J]. China Mechanical Engineering, 2013, 24(9):1264-1272.
[3] LI R J, FAN K C, HUANG Q X, et al. A long-stroke 3D contact scanning probe for micro/nano coordinate measuring machine[J]. Precision Engineering, 2016, 43:220-229.
[4] BOS E J C. Aspects of tactile probing on the micro scale[J]. Precision Engineering, 2011, 35(2):228-240.
[5] 刘芳芳,费业泰,夏豪杰.纳米坐标测量机的三维接触式测头机构[J].纳米技术与精密工程,2011,9(3):249-252. LIU Fang-fang, FEI Ye-tai, XIA Hao-jie. Research on the 3D touch probe mechanism of nano-CMM[J]. Nanotechnology and Precision Engineering, 2011, 9(3):249-252.
[6] ALBLALAIHID K, KIRK T, LAWES S, et al. Fabrication of a smart suspension structure of micro tactile probing[J]. Procedia Engineering, 2014, 87:1164-1167.
[7] 陈晓怀,陈贺,王珊,等.微纳测量机测头弹性结构的参数设计[J].光学精密工程,2013,21(10):2587-2593. CHEN Xiao-huai, CHEN He, WANG Shan, et al. Design of elastic structure parameters of probe in micro-nano CMM[J]. Optics and Precision Engineering, 2013, 21(10):2587-2593.
[8] ALBLALAIHID K, KINNELL P, LAWES S. Fabrication and characterisation of a novel smart suspension for micro-CMM probes[J]. Sensors and Actuators A:Physical, 2015, 232:368-375.
[9] ALBLALAIHID K, KINNELL P, LAWES S, et al. Performance assessment of a new variable stiffness probing system for micro-CMMs[J]. Sensors, 2016, 16(4):492.
[10] KIM K, LIU X, ZHANG Y, et al. Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback[J]. Journal of Micromechanics & Microengineering, 2008, 18(5):055013.
[11] BONELLO P, BRENNAN M J, ELLIOTT S J, et al. Designs for an adaptive tuned vibration absorber with variable shape stiffness element[C]//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences. London:The Royal Society, 2005:3955-3976.
[12] ALBLALAIHID K, LAWES S, KINNELL P. Variable stiffness probing systems for micro-coordinate measuring machines[J]. Precision Engineering, 2016, 43:262-269.
[13] PRIL W. Development of high precision mechanical probes for coordinate measuring machines[J]. Technische Universiteit Eindhoven, 2002, 25(2):100-102.
[14] 曾攀.有限元分析及应用[M].北京:清华大学出版社,2004:51-87. ZENG Pan. Finite element analysis and application[M]. Beijing:Tsinghua University Press, 2004:51-87.
[15] 李源.MEMS压阻式三维微触觉测头及其在纳米测量机上的应用研究[D].天津:天津大学精密仪器与光电子工程学院,2007:29-30. LI Yuan. Study on MEMS piezo-resistance 3D micro tactile probe and application in NMM[D]. Tianjin:Tianjin University, School of Precision Instruments & Optoelectronics Engineering, 2007:29-30.
[16] 刘迎春,邓世林,张文福,等.集中荷载作用下扭转支撑悬臂梁弯扭屈曲分析[J].东北石油大学学报,2017,41(3):103-110. LIU Ying-chun, DENG Shi-lin, ZHANG Wen-fu, et al. Flexural-torsional buckling analysis for cantilever beam with torsional bracing under concentrated load[J]. Journal of Northeast Petroleum University, 2017, 41(3):103-110.
[17] 范钦珊.材料力学[M].北京:清华大学出版社,2008:20-40. FAN Qin-shan. Materials mechanics[M]. Beijing:Tsinghua University Press, 2008:20-40.
[1] 金洪杨,岳龙旺,刘景达,郑卫卫,赵朝,徐嘉辉. 基于散粒体阻塞机理的变刚度柔性机械臂研究[J]. 工程设计学报, 2023, 30(4): 449-455.
[2] 段韦婕,秦慧斌,刘荣,李中一,白绍平. 可重构变刚度柔性驱动器的设计与性能分析[J]. 工程设计学报, 2023, 30(2): 262-270.