设计理论与方法 |
|
|
|
|
一种零件综合质量评定方法研究 |
李梦( ),尹宗军 |
安徽信息工程学院 机械工程学院,安徽 芜湖 241000 |
|
Research on comprehensive quality assessment method for parts |
Meng LI( ),Zong-jun YIN |
Department of Mechatronics Engineering, Anhui Institute of Information Technology, Wuhu 241000, China |
1 |
LIU Q Z, SUNG A H, CHEN Z X, et al. Feature mining and pattern classification for steganalysis of LSB matching steganography in grayscale images[J]. Pattern Recognition, 2008, 41(1): 56-66. doi:10.1016/j.patcog.2007.06.005
doi: 10.1016/j.patcog.2007.06.005
|
2 |
JIA Xi-yue, CAO Yi-ning, David O’CONNOR, et al. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field[J]. Environmental Pollution, 2021, 270: 116281. doi:10.1016/j.envpol.2020.116281
doi: 10.1016/j.envpol.2020.116281
|
3 |
WEI Wei, DING Lie-yun, LUO Han-bin, et al. Automated bughole detection and quality performance assessment of concrete using image processing and deep convolutional neural networks[J]. Construction and Building Materials, 2021, 281: 122576. doi:10.1016/j.conbuildmat.2021.122576
doi: 10.1016/j.conbuildmat.2021.122576
|
4 |
蓝金辉,王迪,申小盼.卷积神经网络在视觉图像检测的研究进展[J].仪器仪表学报,2020,41(4):167-182. doi:10.19650/j.cnki.cjsi.J2006003 LAN Jin-hui, WANG Di, SHEN Xiao-pan. Research progress on visual image detection based on convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2020, 41(4): 167-182.
doi: 10.19650/j.cnki.cjsi.J2006003
|
5 |
SAHA Dhritiman, MANICKAVASAGAN Annamalai. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: a review[J]. Current Research in Food Science, 2021, 4: 28-44. doi:10.1016/j.crfs.2021.01.002
doi: 10.1016/j.crfs.2021.01.002
|
6 |
AYESHA, QURESHI M B, AFZAAL M, et al. Machine learning-based EEG signals classification model for epileptic seizure detection[J]. Multimedia Tools and Applications, 2021, 80(12): 17849-17877. doi:10.1007/s11042-021-10597-6
doi: 10.1007/s11042-021-10597-6
|
7 |
赵勇,李怀宇.基于通用距离测量的机器学习方法用于图像分类和聚类[J].电子测量技术,2017,40(9):136-140. doi:10.3969/j.issn.1002-7300.2017.09.026 ZHAO Yong, LI Hai-yu. Machine learning methods based on universal distance measurement for image classification and clustering[J]. Electronic Measurement Technology, 2017, 40(9): 136-140.
doi: 10.3969/j.issn.1002-7300.2017.09.026
|
8 |
吴春晓,行鸿彦,张漪俊.基于BP神经网络的地温推演模型[J].电子测量与仪器学报,2017,31(10):1561-1567. WU Chun-xiao, HANG Hong-yan, ZHANG Yi-jun. Ground temperature deduction model based on BP neural network[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(10): 1561-1567.
|
9 |
陶显,侯伟,徐德.基于深度学习的表面缺陷检测方法综述[J].自动化学报,2021,47(5):1017-1034. doi:10.16383/j.aas.c190811 TAO Xian, HOU Wei, XU De. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034.
doi: 10.16383/j.aas.c190811
|
10 |
杨明莉,范玉刚,李宝芸.基于LDA和ELM的高光谱图像降维与分类方法研究[J].电子测量与仪器学报,2020,34(5):190-196. doi:10.13382/j.jemi.B1902756 YANG Ming-li, FAN Yu-gang, LI Bao-yun. Research on dimensionality reduction and classification of hyperspectral images based on LDA and ELM[J]. Journal of Electronic Measurement and Instrument, 2020, 34(5): 190-196.
doi: 10.13382/j.jemi.B1902756
|
11 |
SUN Wei-chen, ZHANG Zhi-jing, SHI Ling-ling, et al. Small sample parts recognition and localization from unfocused images in precision assembly systems using relative entropy[J]. Precision Engineering, 2021, 68: 206-217. doi:10.1016/j.precisioneng.2020.12.015
doi: 10.1016/j.precisioneng.2020.12.015
|
12 |
UCEV A, MINALINEE T T. Machine parts recognitionand defect detection in automated assembly systems using computer vision techniques[J]. Revista Técnica De La Facultad De Ingeniería Universidad Del Zulia, 2016, 39(1): 71-80.
|
13 |
BOHLOOL M, TAGHANAKI S R. Cost-efficient automated visual inspection system for small manufacturing industries based on SIFT[C]//23rd International Conference Image and Vision Computing, Christchurch, New Zealand, Nov. 26-28, 2008.
|
14 |
PICCININI P, PRATI A, CUCCHIARA R. Real-time object detection and localization with SIFT-based clustering[J]. Image and Vision Computing, 2012, 30(8): 573-587. doi:10.1016/j.imavis.2012.06.004
doi: 10.1016/j.imavis.2012.06.004
|
15 |
RASHAD M Z, ELDESOUKY B S, KHAWASIK M S. Plants images classification based on textural features using combined classifier[J]. International Journal of Computer Science and Information Technology, 2011, 3(4): 93-100. doi:10.5121/ijcsit.2011.3407
doi: 10.5121/ijcsit.2011.3407
|
16 |
ALAMOUDI S, HONG X, WEI H. Plant leaf recognitionusing texture features and semi-supervised spherical k-means clustering[C]//International Joint Conference on Neural Networks (IJCNN), Glasgow, Jul. 19-24, 2020. doi:10.1109/ijcnn48605.2020.9207386
doi: 10.1109/ijcnn48605.2020.9207386
|
17 |
刘丽,赵凌君,郭承玉,等.图像纹理分类方法研究进展和展望[J].自动化学报,2018,44(4):584-607. doi:10.16383/j.aas.2018.c160452 LIU Li, ZHAO Ling-jun, GUO Cheng-yu, et al. Texture classification: state-of-the-art methods and prospects[J]. Acta Automatica Sinica, 2018, 44(4): 584-607.
doi: 10.16383/j.aas.2018.c160452
|
18 |
李晖,吴佳宁,苑玮琦,等.基于视觉显著性的木板实时分类方法研究[J].仪器仪表学报,2018,39(12):237-244. doi:10.19650/j.cnki.cjsi.J1803700 LI Hui, WU Jia-ning, YUAN Wei-qi, et al. Real-time classification of wood based on visual significance[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 237-244.
doi: 10.19650/j.cnki.cjsi.J1803700
|
19 |
YANG Cheng-zhuan, YU Qian. Multiscale fourier descriptor based on triangular features for shape retrieval[J]. Signal Processing Image Communication, 2019, 71: 110-119. doi:10.1016/j.image.2018.11.004
doi: 10.1016/j.image.2018.11.004
|
20 |
LEE S H, CHAN C S, REMAGNINO P. Multi-organ plant classification based on convolutional and recurrent neural networks[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4287-4301. doi:10.1109/tip.2018.2836321
doi: 10.1109/tip.2018.2836321
|
21 |
杨高科.图像处理、分析与机器视觉[M].北京:清华大学出版社,2018:472-485. YANG Gao-ke. Image processing, analysis, and machine vision[M]. Beijing: Tsinghua University Press, 2018: 472-485.
|
22 |
周志华.机器学习[M].北京:清华大学出版社,2018:229-232. ZHOU Zhi-hua. Machine learning[M]. Beijing: Tsinghua University Press, 2018: 229-232.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|