Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (6): 736-742    DOI: 10.3785/j.issn.1006-754X.2019.00.005
整机和系统设计     
上下肢康复机器人的结构与控制系统设计
穆载乐1,2, 方娟1,2,3, 陈隆飞1,2, 张秋菊1,2
1.江南大学 机械工程学院, 江苏无锡 214122
2.江苏省食品先进制造装备技术重点实验室, 江苏无锡 214122
3.伯尔尼应用科学大学 康复与性能技术研究所, 瑞士 布格多夫 3400
Design of structure and control system for a rotational orthosis for walking with arm swing
MU Zai-le1,2, FANG Juan1,2,3, CHEN Long-fei1,2, ZHANG Qiu-ju1,2
1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2.Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment Technology, Wuxi 214122, China
3.Institute of Rehabilitation and Performance Technology (IRPT), Bern University of Applied Sciences, Burgdorf 3400, Switzerland
 全文: PDF(2932 KB)   HTML
摘要: 为更好地辅助中风偏瘫患者进行早期康复治疗,基于上下肢运动神经耦合理论,研制了一款上下肢康复机器人。首先,依据康复医学相关理论对上肢和下肢康复装置进行结构设计,并对下肢康复装置中的踝关节康复装置和下肢长度调整装置的机械结构进行详细介绍。然后,采用极点配置法建立位置闭环控制系统,实现上下肢康复机器人的被动联动运动。最后,招募4名健康的测试者进行上机测试。实验结果表明,该机器人实现了上下肢关节同步被动运动,且上下肢各关节运动轨迹误差不超过1.50°,说明其运动轨迹跟踪效果良好。该上下肢康复机器人可以实现双侧肩、髋、膝和踝关节共8个关节的联动运动,有望为偏瘫患者提供更好的早期步态康复治疗。
关键词: 上下肢康复机器人极点配置法被动运动    
Abstract: In order to better assist stroke patients in early rehabilitation, a rotational orthosis for walking with arm swing is developed based on the theory of interlimb neural coupling. Firstly, according to the theory of rehabilitation medicine, the structures of upper and lower limb rehabilitation devices were designed, and the mechanical structures of the ankle joint rehabilitation device and the lower limb length adjusting device were introduced in detail. Then, the position closed-loop control system was established by the pole-placement approach to realize the passive linkage motion of the rotational orthosis for walking with arm swing. Finally, four able-bodied participants were recruited to test the orthosis. The experimental results showed that the rotational orthosis for walking with arm swing achieved synchronous passive motion of joints of upper and lower limbs, and every joint tracked the target trajectory well with the error not exceed 1.50°. The orthosis achieved linkage motion of the bilateral shoulder, hip, knee and ankle joints, which was believed to be efficient for the early gait rehabilitation for stroke patients.
Key words: rotational orthosis for walking with arm swing    pole-placement    passive motion
收稿日期: 2019-07-02 出版日期: 2019-12-28
CLC:  TH-39  
基金资助: 国家自然科学基金资助项目(81401856);江苏省研究生科研与实践创新计划项目(KYCX19_1880)
通讯作者: 张秋菊(1963—),女,四川乐至人,教授,博士生导师,博士,从事机电控制系统设计、机器人技术和数控编程等研究,E-mail:qjzhang@jiangnan.edu.cn     E-mail: qjzhang@jiangnan.edu.cn
作者简介: 穆载乐(1994—),男,山西吕梁人,硕士生,从事康复机器人设计与控制研究,E-mail:muzaile94@163.com, https://orcid.org/0000-0001-9991-9321
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
穆载乐
方娟
陈隆飞
张秋菊

引用本文:

穆载乐, 方娟, 陈隆飞, 张秋菊. 上下肢康复机器人的结构与控制系统设计[J]. 工程设计学报, 2019, 26(6): 736-742.

MU Zai-le, FANG Juan, CHEN Long-fei, ZHANG Qiu-ju. Design of structure and control system for a rotational orthosis for walking with arm swing. Chinese Journal of Engineering Design, 2019, 26(6): 736-742.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.00.005        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I6/736

[1] 帅记焱, 刘雅丽. 运动再学习疗法对脑卒中偏瘫患者功能恢复的疗效观察 [J]. 中国康复,2013,28(6):437-438. doi:10.3870/zgkf.2013.06.010 SHUAI Ji-yan, LIU Ya-li. Effect of motor relearning programme on the functional recovery of hemiplegic patients after stroke[J]. Chinese Journal of Rehabilitation, 2013, 28(6): 437-438.
[2] 赵雅宁, 郝正玮, 李建民, 等. 下肢康复训练机器人对缺血性脑卒中偏瘫患者平衡及步行功能的影响[J]. 中国康复医学杂志,2012,27(11):1015-1020. doi: 10.3969/j. issn.1001-1242.2012.11.007 ZHAO Ya-ning, HAO Zheng-wei, LI Jian-min, et al. The effect of Lokomat lower limb gait training rehabilitation robot on balance function and walking ability in hemiplegic patients after ischemic stroke[J]. Chinese Journal of Rehabilitation Medicine, 2012, 27(11): 1015-1020.
[3] COLOMER C, BALDOV A, TORROM S, et al. Efficacy of Armeo? Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis[J]. Neurología, 2013, 28(5): 261-267. doi: 10.1016/j.nrleng. 2012.04.017
[4] KLEIN J, SPENCER S, ALLINGTON J, et al. Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton[J]. IEEE Transactions on Robotics, 2010, 26(4): 710-715. doi: 10.1109/tro.2010.2052170
[5] RICHARDSON R, BROWN M, BHAKTA B, et al. Design and control of a three degree of freedom pneumatic physiotherapy robot[J]. Robotica, 2003, 21(6): 589-604. doi:10.1017/S0263574703005320
[6] 吴青聪, 王兴松, 吴洪涛, 等. 上肢康复外骨骼机器人的模糊滑模导纳控制[J]. 机器人,2018,40(4):67-75. doi: 10.13973/j.cnki.robot.18093 WU Qing-cong, WANG Xing-song, WU Hong-tao, et al. Fuzzy sliding mode admittance control of the upper limb rehabilitation exoskeleton robot[J]. Robot, 2018, 40(4): 67-75.
[7] HIDLER J, WISMAN W, NECKEL N. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis[J]. Clinical Biomechanics, 2008, 23(10): 1251-1259. doi:10.1016/j.clinbiomech.2008.08.004
[8] SUSANNA F, JAN M, TANYA H S, et al. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study[J]. Brain Injury, 2008, 22(7/8): 625-632. doi:10.1080/02699050801941771
[9] ESQUENAZI A, PACKEL A. Robotic-assisted gait training and restoration[J]. American Journal of Physical Medicine & Rehabilitation, 2012, 91(11): S217-S231. doi: 10.1097/PHM.0b013e31826bce18
[10] 李晓飞. 下肢康复机器人的设计及控制策略研究[D]. 哈尔滨:哈尔滨工业大学机电工程学院, 2016:41-59. LI Xiao-fei. Design and control strategy of lower limb rehabilitation robot[D]. Harbin: Harbin Institute of Technology, School of Mechatronics Engineering, 2016:41-59.
[11] 李峰, 吴智政, 钱晋武. 下肢康复机器人步态轨迹自适应控制[J]. 仪器仪表学报,2014,35(9):2027-2036. doi: 10.3969/j.issn.0254-3087.2014.09.014 LI Feng, WU Zhi-zheng, QIAN Jin-wu. Trajectory adaptation control for lower extremity rehabilitation robot[J]. Chinese Journal of Scientific Instrument, 2014, 35(9): 2027-2036.
[12] Lü X, YANG C, LI X, et al. Passive training control for the lower limb rehabilitation robot[C]// 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Aug. 6-9, 2017. doi:10.1109/ICMA.2017.8015936
[13] DIETZ V, FOUAD K, BASTIAANSE C M. Neuronal coordination of arm and leg movements during human locomotion[J]. European Journal of Neuroscience, 2002, 14(11): 1906-1914. doi:10.1046/j.0953-816x.2001.01813.x
[14] MU Z, FANG J, ZHANG Q. Admittance control of the ankle mechanism in a rotational orthosis for walking with arm swing [C]// IEEE International Conference on Rehabilitation Robotics, Toronto, IEEE, 2019: 709-714.doi:10.1109/icorr.2019.8779408
[15] 方娟, 谢叻, 杨国源. 一种模仿行走动力模式的康复气垫鞋:CN104146850A [P]. 2014-11-19. FANG Juan, XIE Le, YANG Guo-yuan. A rehabilitation air-cushion shoe for imitating walking power mode: CN104146850A [P]. 2014-11-19.
[16] 燕铁斌. 骨科康复评定与治疗技术[M]. 北京:人民军医出版社,2011:321-325. YAN Tie-bin. Rehabilitation evaluation and treatment techniques in orthopaedics [M]. Beijing: People's Military Medical Press, 2011: 321-325.
[17] NEPTUNE R R, KAUTZ S A, ZAJAC F E. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking[J]. Journal of Biomechanics, 2001, 34(11): 1387-1398. doi:10.1016/S0021-9290(01)00105-1
[18] 徐中华, 方娟, 穆载乐, 等. 下肢康复机器人的运动控制设计[J]. 传感器与微系统,2019,38(9):81-83. doi: 10.13873/J.1000-9787(2019)09-0081-03 XU Zhong-hua, FANG Juan, MU Zai-le, et al. Design of motion control for lower limb rehabilitation robot [J]. Transducer and Microsystem Technologies, 2019, 38(9): 81-83.
[19] HUNT K J, FANKHAUSER S E. Heart rate control during treadmill exercise using input-sensitivity shaping for disturbance rejection of very-low-frequency heart rate variability [J]. Biomedical Signal Processing & Control, 2016, 30: 31-42. doi:10.1016/j.bspc.2016.06.005
[20] CHRIF F, NEF T, LUNGARELLA M, et al. Control design for a lower-limb paediatric therapy device using linear motor technology[J]. Biomedical Signal Processing & Control, 2017, 38: 119-127. doi:10.1016/j.bspc. 2017.05. 011
[1] 李梦,尹宗军. 一种零件综合质量评定方法研究[J]. 工程设计学报, 2022, 29(4): 410-418.
[2] 严颖, 张小平, 姜海鹏, 张铸, 赵延明, 黄良沛. 基于GSSEC的开关磁阻电机驱动的海洋绞车主动升沉补偿控制方法[J]. 工程设计学报, 2021, 28(2): 132-140.
[3] 王奔, 朱龙彪, 沈祖军, 陈小林. LYP1050轮转胶印机控制系统设计[J]. 工程设计学报, 2021, 28(1): 112-120.
[4] 曹鹏勇, 王建文. 基于STM8S105的智能车结构及控制系统的研究[J]. 工程设计学报, 2020, 27(4): 516-523.
[5] 杨蕾, 任成祖. 圆柱滚子电磁推进装置仿真与推进实验分析[J]. 工程设计学报, 2019, 26(5): 611-618.