Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 244-253    DOI: 10.3785/j.issn.1006-754X.2023.00.030
整机和系统设计     
新型高速列车风阻制动装置设计与仿真分析
谢红太1,2(),王红1(),柴伟1
1.兰州交通大学 机电工程学院,甘肃 兰州 730070
2.华设设计集团股份有限公司 铁道规划设计研究院,江苏 南京 210014
Design and simulation analysis of new wind resistance braking device for high-speed trains
Hongtai XIE1,2(),Hong WANG1(),Wei CHAI1
1.School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2.Railway Planning and Design Institute, China Design Group Co. , Ltd. , Nanjing 210014, China
 全文: PDF(3662 KB)   HTML
摘要:

运行时速超过350 km的高速列车在高速阶段辅助制动或紧急制动时,风阻制动是一种行之有效的制动措施。研制综合气动性能优越及适用性广的风阻制动装置是下一代时速400+ km高速列车开发中亟待解决的关键技术问题之一。在总结分析现有技术的可行性和实用性的基础上,提出了新型风阻制动装置的设计理念和方法,重点从满足多级协同制动、优化气动性能、降低气动噪声及减弱结构振动等方面考虑开发实施,完成了窗形风阻制动装置及其改进型设计方案。结果表明:通过前后设置的沿安装基座前后边缘转动开启的2排风阻制动板进行多模式选择制动,有效克服了传统风阻制动板从前往后开启所造成的气动噪声剧烈、颤振及后排风阻制动板制动效率低等问题;同时,采用自馈补偿和板型导流两种制动补偿方式对风阻制动装置的二次空气动力学性能进行优化设计,进一步改善了装置制动工作时的外围流场结构,最大程度避免了非制动状态下附加气动阻力的形成;针对风阻制动装置的传动控制,创新性地设计了电路模拟控制和液压驱动控制方案。以运行时速为400 km的CR400AF平台动车组单节车辆装配单组改进型窗形风阻制动装置为计算模型,模拟得到装置在紧急制动时贡献的气动阻力为4.70 kN,产生的气动升力为1.13 kN,具备较好的高速阶段增阻特性。窗形风阻制动装置及其改进型设计方案在制动效率、风阻制动板利用率、空气动力学性能及气动噪声等方面表现出较强的优势。未来高速列车风阻制动装置的设计及应用需进一步从线路条件、运行风环境、瞬时启停性能、电控系统、结构振动及强度设计等方面开展实验研究。

关键词: 高速列车空气动力学风阻制动制动装置气动性能    
Abstract:

Wind resistance braking is an effective braking measure for high-speed trains running at speeds exceeding 350 km/h during high-speed stage of auxiliary braking or emergency braking. Developing a wind resistance braking device with superior comprehensive aerodynamic performance and wide applicability is one of the key technical issues that urgently need to be solved in the development of the next generation high-speed trains with running speeds of 400+ km/h. On the basis of summarizing and analyzing the feasibility and practicality of existing technologies, the design concept and method of a new wind resistance braking device was proposed, with a focus on meeting the requirements of multi-level collaborative braking, optimizing aerodynamic performance, reducing aerodynamic noise and weakening structural vibration. Therefore, a window-shaped wind resistance braking device and its improved design scheme were completed. The results showed that the multi-mode selective braking was achieved by rotationally opening the two-row wind resistance braking plates set forward and backward along the front and rear edges of the installation base, which effectively overcame the problems of severe aerodynamic noise, flutter and low braking efficiency of the rear wind resistance braking plate caused by traditional wind resistance braking plates opening from front to back; at the same time, the secondary aerodynamic performance of the wind-resistance braking device was optimized by using two braking compensation methods, self-feeding compensation and plate diversion, which further improved the peripheral flow field structure of the device during braking, and avoided the formation of additional aerodynamic resistance in non-braking state to the greatest extent. Aiming at the transmission control of wind resistance braking device, the circuit simulation control and hydraulic drive control schemes were innovatively designed. Taking the CR400AF platform electrical multiple unit with a running speed of 400 km/h and equipped with a single improved window-shaped wind resistance braking device as the calculation model, the simulation results showed that the device contributed 4.70 kN of aerodynamic resistance and generated 1.13 kN of aerodynamic lift during emergency braking, exhibiting good resistance increasing characteristics in high-speed stage. The window-shaped wind resistance braking device and its improved design scheme have strong advantages in braking efficiency, braking plate utilization, aerodynamic performance and aerodynamic noise. The design and application of future high-speed train wind resistance braking devices require further experimental research from the aspects of line conditions, operating wind environment, instantaneous start-stop performance, electronic control system, structural vibration and strength design.

Key words: high-speed train    aerodynamics    wind resistance braking    braking device    aerodynamic performance
收稿日期: 2022-12-13 出版日期: 2023-05-06
CLC:  TH-39  
基金资助: 国家自然科学基金资助项目(72061022)
通讯作者: 王红     E-mail: xiehongtai.cdg@qq.com;wh@mail.lzjtu.cn
作者简介: 谢红太(1993—),男,甘肃平凉人,工程师,博士生,从事轨道交通车辆零部件可靠性及列车空气动力学研究,E-mail: xiehongtai.cdg@qq.com,https://orcid.org/0000-0001-7891-6084
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢红太
王红
柴伟

引用本文:

谢红太,王红,柴伟. 新型高速列车风阻制动装置设计与仿真分析[J]. 工程设计学报, 2023, 30(2): 244-253.

Hongtai XIE,Hong WANG,Wei CHAI. Design and simulation analysis of new wind resistance braking device for high-speed trains[J]. Chinese Journal of Engineering Design, 2023, 30(2): 244-253.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.030        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/244

图1  蝶形风阻制动装置整体结构
图2  高速列车风阻制动基本原理
图3  蝶形风阻制动装置机构设计
图4  窗形风阻制动装置机构设计
项目所要克服的技术问题解决方案
制动方式1)风阻制动板仅支持单向风阻制动,利用率低1)采用满足列车双向运行的双排风阻制动板窗形制动布置方案
2)制动阻力单一、不可多级调控2)针对列车不同运行速度等级对应的风阻制动需求,设计多级可调可控的限位机构,如电控锁或双向液压控制限位机构等
气动噪声1)制动时风阻制动板内侧面(包含复杂突出物)为迎风面,导致气动噪声大1)以风阻制动板外侧面作为迎风面,如采用双排风阻制动板窗形制动布置方案
2)制动及非制动状态下因部分零部件外露而产生气动噪声2)将整体装置内嵌于列车顶面下陷凹槽中,同时设置能满足不同制动工况的自动补偿机构,如设置侧板及补偿板等
气动性能非制动状态下因风阻制动板非流线型外观结构及基座等与车顶表面设计贴合不良而导致空气阻力系数大设计风阻制动板迎风面时考虑采用与车顶面外型贴合过渡顺畅及气动性能优良的外观造型,如风阻制动板迎风面与车顶流线型外观曲面过渡一致设计等
振动风阻制动板开启及收回时易产生振动及碰撞采用缓冲阻尼结构,如阻尼弹簧、液压溢流调节控制结构等
表1  现有风阻制动装置所需克服的技术问题及解决方案
图5  窗形风阻制动装置结构组成1—基座; 2—风阻制动板; 3—低速电机; 4—固定横梁; 5—限位及锁紧机构组件; 6—滑轴; 7—缓冲弹簧; 8—滑动块; 9—联轴器; 10—连接架; 11—侧板; 12—补偿板; 13—补偿机构组件; 14—推拉杆。
图6  窗形风阻制动装置制动模式
图7  改进型窗形风阻制动装置结构组成1—基座; 2—风阻制动板; 3—双向液压推进锁紧机构; 4—固定横梁; 5—联动推杆; 6—滑轴及缓冲弹簧组件; 7—滑动块; 8—连接架; 9—侧板; 10—补偿板; 11—补偿机构组件; 12—推拉杆; 13—中间补偿板。
图8  改进型窗形风阻制动装置基本设计尺寸
图9  窗形风阻制动装置低速电机驱动机构
图10  窗形风阻制动装置驱动电机控制电路
图11  风阻制动板动作模拟电路
图12  改进型窗形风阻制动装置双向液压推进锁紧机构
图13  柱式双向液压推进锁紧机构结构组成1—主轴; 2—缸体; 3—柱塞; 4—端盖; 5—高压油管; 6—防尘圈; 7—支承环; 8—密封圈; 9—小防尘圈; 10—小密封圈; A1—缸体左进油口; B1—缸体左出油口; A2—缸体右进油口; B2—缸体右出油口。
图14  柱式双向液压推进锁紧机构工作状态示意
图15  柱式双向液压推进锁紧机构工作原理YX—油箱; LQ—滤清器; MD—液压马达; JL1、 JL2—节流阀;HX—换向阀; DX1、DX2—单向阀; JZ1、JZ2—截止阀; YL1、YL2—压力计。
图16  窗形风阻制动装置补偿机构
图17  改进型窗形风阻制动装置补偿机构
图18  自馈补偿调节控制机构1—基座; 2—补偿板; 3—电控锁; 4—固定横梁; 5—补偿板支撑滑块; 6—风阻制动板; 7—侧板; 8—滑槽挡板; 9—弹簧支撑滑动块; 10—弹簧支撑固定块; 11—支撑压缩弹簧。
图19  改进型窗形风阻制动装置纵向对称面内稳态压力分布及流动状态
图20  改进型窗形风阻制动装置纵向对称面内的压力系数分布 (外围轮廓线外100 mm处)
1 杨国伟,魏宇杰,赵桂林,等.高速列车的关键力学问题[J].力学进展,2015,45(1):201507. doi:10.6052/1000-0992-14-002
YANG G W, WEI Y J, ZHAO G L, et al. Research progress on the mechanics of high speed rails [J]. Advances in Mechanics, 2015, 45(1): 201507.
doi: 10.6052/1000-0992-14-002
2 田红旗.中国高速轨道交通空气动力学研究进展及发展思考[J].中国工程科学,2015,17(4):30-41. doi:10.3969/j.issn.1009-1742.2015.04.004
TIAN H Q. Development of research on aerodynamics of high-speed rails in China[J]. Strategic Study of CAE, 2015, 17(4): 30-41.
doi: 10.3969/j.issn.1009-1742.2015.04.004
3 朱海燕,曾庆涛,王宇豪,等.高速列车动力学性能研究进展[J].交通运输工程学报,2021,21(3):57-92. doi:10.19818/j.cnki.1671-1637.2021.03.004
ZHU H Y, ZENG Q T, WANG Y H, et al. Research progress on dynamics performance of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 57-92.
doi: 10.19818/j.cnki.1671-1637.2021.03.004
4 蔡国华.高速客车模型气动特性实验研究[J].实验流体力学,2007,21(4):27-31. doi:10.3969/j.issn.1672-9897.2007.04.006
CAI G H. An experimental research on aerodynamic characteristics of the high speed passenger train model[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 27-31.
doi: 10.3969/j.issn.1672-9897.2007.04.006
5 MASAFUMI Y. Characteristics of the aerodynamic brake of the vehicle on the Yamanashi maglev test line[J]. RIRI, 2000, 41(2): 74-78.
6 周文.日本最新研制的“姊妹”高速列车:Fastech 360S型和Fastech 360Z型高速列车[J].铁道知识,2006,4(1):17.
ZHOU W. Japan’s latest "sister" high-speed train: Fastech 360S type and Fastech 360Z high-speed train[J]. Railway Knowledge, 2006, 4(1): 17.
7 ZUO J Y, WU M L, TIAN C, et al. Aerodynamic braking device for high-speed trains: design, simulation and experiment[J]. Journal of Rail and Rapid Transit, 2014, 228(3): 260-270.
8 张硕果.基于SPH方法的高速列车风阻制动板性能研究 [D].成都:西南交通大学,2020:14-20.
ZHANG S G. Research on performance of aerodynamics brake panel on high-speed train based on SPH method[D]. Chengdu: Southwest Jiaotong University, 2020: 14-20.
9 南京中车浦镇海泰制动设备有限公司.一种高速列车风阻制动装置:CN201711401028.6[P].2018-06-01.
Nanjing CRRC Puzhen Haitai Brake Equipment Co., Ltd. A wind resistance braking device for high-speed trains: CN201711401028.6[P]. 2018-06-01.
10 中车青岛四方车辆研究所有限公司.一种轨道列车双向风阻制动装置:CN201910773588.7[P].2020-07-14.
CRRC Qingdao Sifang Vehicle Research Institute Co., Ltd. A two-way wind resistance braking device for rail trains: CN201910773588.7[P]. 2020-07-14.
11 中南大学.一种双层风阻制动装置、双层司机室结构及高速列车:CN202010856669.6[P].2020-11-24. doi:10.15802/stp2013/16609
Central South University. A double-layer wind resistance braking device, double-layer cab structure and high-speed train: CN202010856669.6[P]. 2020-11-24.
doi: 10.15802/stp2013/16609
12 中南大学.一种具有风阻制动装置的高速列车司机室及高速列车:CN202010856698.2[P].2020-11-24.
Central South University. A high-speed train cab with wind resistance braking device and a high-speed train: CN202010856698.2[P]. 2020-11-24.
13 中车青岛四方车辆研究所有限公司.风阻制动装置:CN201910204573.9[P].2020-04-10.
CRRC Qingdao Sifang Vehicle Research Institute Co., Ltd. Wind resistance braking device: CN201910204573.9[P]. 2020-04-10.
14 TAKAMI H, MAEKAWA H. Characteristics of a wind-actuated aerodynamic braking device for high-speed trains[J]. Journal of Physics: Conference Series, 2017, 822(1): 012061.
15 华设设计集团股份有限公司,兰州交通大学.一种新型高速列车风阻制动装置:CN202111381542.4[P].2022-09-06.
China Design Group Co., Ltd., Lanzhou Jiaotong University. A new type of wind resistance braking device for high-speed trains: CN202111381542.4[P]. 2022-09-06.
16 兰州交通大学,谢红太.一种可多级调控的适用于高速列车的风阻制动装置:CN202210000016.7[P].2022-09-20.
Lanzhou Jiaotong University, XIE H T. A wind resistance braking device applicable to high-speed trains with multi-level regulation: CN202210000016.7[P]. 2022-09-20.
17 华设设计集团股份有限公司,兰州交通大学.一种高速列车风阻制动装置安装位置优化及选择的确定方法:CN202111381500.0[P].2022-06-07.
China Design Group Co., Ltd., Lanzhou Jiaotong University. A method for determining the installation position optimization and selection of wind resistance braking device of high-speed train: CN202111381500.0[P]. 2022-06-07.
18 谢红太,王红.400 km/h高速列车“蝶形”风阻制动装置设计与仿真[J].北京交通大学学报,2022,46(6):152-160.
XIE H T, WANG H. Design and simulation of "butterfly" wind resistance braking device for 400 km/h high-speed train[J]. Journal of Beijing Jiaotong University, 2022, 46(6): 152-160.
19 谢红太.强侧风作用下带制动风翼板高速列车周围流场结构分析[J].大连理工大学学报,2022,62(2):188-196. doi:10.7511/dllgxb202202011
XIE H T. Analysis of the flow field structure around a high-speed train with brake wind wing in strong crosswind[J]. Journal of Dalian University of Technology, 2022, 62(2): 188-196.
doi: 10.7511/dllgxb202202011
20 谢红太,王红.强侧风作用下带风阻制动板高速列车气动力和力矩特性分析[J/OL].武汉大学学报(工学版):1-15[2023-04-11]..
XIE H T, WANG H. Analysis of aerodynamic force and torque characteristics of high-speed train with windage brake plate under strong crosswind [J/OL]. Engineering Journal of Wuhan University: 1-15[2023-04-11]. .
[1] 李梦,尹宗军. 一种零件综合质量评定方法研究[J]. 工程设计学报, 2022, 29(4): 410-418.
[2] 严颖, 张小平, 姜海鹏, 张铸, 赵延明, 黄良沛. 基于GSSEC的开关磁阻电机驱动的海洋绞车主动升沉补偿控制方法[J]. 工程设计学报, 2021, 28(2): 132-140.
[3] 王奔, 朱龙彪, 沈祖军, 陈小林. LYP1050轮转胶印机控制系统设计[J]. 工程设计学报, 2021, 28(1): 112-120.
[4] 曹鹏勇, 王建文. 基于STM8S105的智能车结构及控制系统的研究[J]. 工程设计学报, 2020, 27(4): 516-523.
[5] 穆载乐, 方娟, 陈隆飞, 张秋菊. 上下肢康复机器人的结构与控制系统设计[J]. 工程设计学报, 2019, 26(6): 736-742.
[6] 杨蕾, 任成祖. 圆柱滚子电磁推进装置仿真与推进实验分析[J]. 工程设计学报, 2019, 26(5): 611-618.