Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 237-243    DOI: 10.3785/j.issn.1006-754X.2023.00.017
建模、仿真、分析与决策     
密封面磨损对V形组合密封圈性能的影响
张毅(),熊思阳,钟思鹏,熊子杰,杨强
西南石油大学 机电工程学院,四川 成都 610500
Effect of sealing surface wear on the performance of V-shaped combined sealing ring
Yi ZHANG(),Siyang XIONG,Sipeng ZHONG,Zijie XIONG,Qiang YANG
School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(3127 KB)   HTML
摘要:

密封面磨损对V形组合密封圈的密封性能有显著影响。建立了V形组合密封圈的有限元模型,基于V形圈接触压力大的地方磨损较快且磨损较大的区域向空气侧移动的特点,在有限元仿真计算中通过修改V形圈的轮廓来表示V形组合密封圈不同的磨损状态,进而研究密封圈在不同磨损状态下的接触压力分布情况。考虑到V形组合密封圈变形与润滑油膜之间的耦合作用,基于弹性流体动压润滑理论,建立了V形组合密封圈弹流润滑数学模型。基于小变形理论,通过变形影响系数矩阵法得到V形组合密封圈在高压作用下的弹性变形,通过有限差分法求解了密封圈在工作过程中的油膜压力分布和厚度分布,分析了密封面磨损和粗糙度对组合密封圈润滑性能的影响。搭建了V形组合密封圈性能实验台,得到了在轻度和中度磨损状态下密封圈在不同电机转速下的摩擦扭矩和泄漏率,并将实验结果与仿真结果进行对比。结果表明:随着磨损加剧,靠近润滑油一侧油膜的压力和厚度增大;对于已经发生磨损的密封圈,粗糙度的提高会使其油膜压力增大;转速提高会使密封圈所受的摩擦扭矩和泄漏率增大。研究结果为提高V形组合密封圈的性能提供了参考。

关键词: 弹流润滑模型磨损粗糙度旋转密封圈    
Abstract:

The wear of the sealing surface has a significant impact on the sealing performance of V-shaped combined sealing ring. A finite element model of the V-shaped combined sealing ring was established. Based on the characteristics of rapid wear in areas with high contact pressure and the movement of the area with greater wear towards the air side, the contact pressure distribution of the sealing ring under different wear states was studied by modifying the contour of the V-shaped ring in the finite element simulation process to represent the different wear states of the V-shaped combined seal. Considering the coupling effect between deformation of V-shaped combined sealing ring and lubricating oil film, based on the elastohydrodynamic lubrication theory, an elastohydrodynamic lubrication mathematical model for V-shaped combined sealing ring was established. Based on the small deformation theory, the elastic deformation of the sealing ring under high pressure was obtained by the deformation influence coefficient matrix method. The oil film pressure distribution and thickness distribution in the working process of the sealing ring were solved by the finite difference method, and the influence of the wear and roughness of the sealing surface on the lubrication performance of the combined sealing ring was analyzed. A V-shaped combined sealing ring performance test bench was built to obtain the friction torque and leakage rate of the sealing ring under mild and moderate wear conditions at different motor speeds, and the test results were compared with the simulation results. The results showed that as wear intensified, the pressure and thickness of the oil film near the lubricating oil side increased; for seals that had already undergone wear, an increase in roughness would increase the oil film pressure; an increase in motor speed would increase the frictional torque and leakage rate of the sealing ring. The research results provide a reference for improving the performance of V-shaped combined sealing ring.

Key words: elastohydrodynamic lubrication model    wear    roughness    rotary seal ring
收稿日期: 2022-04-27 出版日期: 2023-05-06
CLC:  TQ 336.42  
基金资助: 四川省自然科学基金资助项目(2022NSFSC0276)
作者简介: 张 毅(1983—),男,河南南阳人,讲师,博士,从事智能钻采工具和极端工况下动态密封润滑研究,E-mail: dream5568@126.com, http://orcid.org/0000-0002-1650-3898
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张毅
熊思阳
钟思鹏
熊子杰
杨强

引用本文:

张毅,熊思阳,钟思鹏,熊子杰,杨强. 密封面磨损对V形组合密封圈性能的影响[J]. 工程设计学报, 2023, 30(2): 237-243.

Yi ZHANG,Siyang XIONG,Sipeng ZHONG,Zijie XIONG,Qiang YANG. Effect of sealing surface wear on the performance of V-shaped combined sealing ring[J]. Chinese Journal of Engineering Design, 2023, 30(2): 237-243.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.017        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/237

图1  V形组合密封圈的结构
图2  V形组合密封圈润滑油膜示意
参数量值
l0.74 mm
b1.75 mm
聚四氟乙烯表面粗糙度Raseal1.6 μm
聚四氟乙烯均方根粗糙度σseal2 μm
表1  V形圈接触面参数
图3  V形圈接触面粗糙高度分布模拟图
图4  V形组合密封圈模型网格划分结果
图5  不同磨损条件下V形圈轮廓示意
图6  不同磨损条件下V形圈与轴的接触压力云图
图7  V形圈法向变形系数矩阵
图8  弹流润滑数值计算流程
参数量值
流体压力20 MPa
润滑油黏度0.072 Pa·s
润滑油密度890 kg/m3
密封圈弹性模量6.87 MPa
密封圈泊松比0.5
密封圈初始压缩比10%
聚四氟乙烯弹性模量200 MPa
聚四氟乙烯泊松比0.45
表2  弹流润滑工况参数
图9  不同磨损程度下的油膜压力和厚度
图10  不同粗糙度下的油膜压力和厚度
图11  V形组合密封圈性能实验台
图12  电机转速对V形组合密封圈摩擦扭矩的影响
图13  电机转速对V形组合密封圈泄漏率的影响
1 吴长贵,索双富,张开会,等.基于ABAQUS的航空作动器VL密封圈有限元分析[J].液压与气动,2016(1):60-65. doi:10.11832/j.issn.1000-4858.2016.01.012
WU C G, SUO S F, ZHANG K H, et al. Aircraft actuator VL seal finite element analysis based on ABAQUS[J]. Chinese Hydraulics & Pneumatic, 2016 (1): 60-65.
doi: 10.11832/j.issn.1000-4858.2016.01.012
2 徐敏,徐时贤,陆明,等.磨损对VL结构密封性能的影响分析[J].液压气动与密封,2019,39(2):45-48,53. doi:10.3969/j.issn.1008-0813.2019.02.013
XU M, XU S X, LU M, et al. Influence of wear on the sealing performance of VL structure[J]. Hydraulics Pneumatics & Seals, 2019, 39(2): 45-48, 53.
doi: 10.3969/j.issn.1008-0813.2019.02.013
3 欧阳小平,薛志全,彭超,等.航空作动器的VL密封特性分析[J].浙江大学学报(工学版), 2015, 49(9):1755-1761. doi:10.1016/j.carbon.2015.03.024
OUYANG X P, XUE Z Q, PENG C, et al. Performance analysis on VL seal in aircraft cylinder[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(9): 1755-1761.
doi: 10.1016/j.carbon.2015.03.024
4 HAI S, HEIKO P, UWE S, et al. Wear and friction of PTFE seals[J]. Wear, 1999, 224(2): 175-182. doi:10.1016/S0043-1648(98)00306-8
doi: 10.1016/S0043-1648(98)00306-8
5 SUI P C, ANDERLE S. Optimization of contact pressure profile for performance improvement of a rotary elastomeric seal operating in abrasive drilling environment[J]. Wear, 2011(9/10): 2466-2470. doi:10.1016/j.wear.2011.02.021
doi: 10.1016/j.wear.2011.02.021
6 BURKHART C, EMRICH S, KOPNARSKI M, et al. Excessive shaft wear due to radial shaft seals in lubricated environment. Part I: Analysis and mechanisms[J]. Wear, 2020,460-461: 203419.
7 GRÜN J, FELDMETH J, BAUER F. Wear on radial lip seals: A numerical study of the influence on the sealing mechanism[J]. Wear, 2021, 476: 203674.
8 BÉKÉSI N, VÁRADI K. Wear simulation of a reciprocating seal by global remeshing[J]. Periodica Polytechnica Mechanical Engineering, 2010, 54(2): 71-75.
9 张付英,郭威,初宏怡.润滑条件下油封的磨损预测[J].机械设计与研究, 2021, 37(1):97-101.
ZHANG F Y, GUO W, CHU H Y. Prediction of radial lip seal wear under lubricating conditions[J]. Machine Design & Research, 2021, 37(1): 97-101.
10 杨化林,孙维威,李修隆.往复式骨架油封密封界内油膜压力和厚度分布[J].润滑与密封,2020,45(7):36-40.
YANG H L, SUN W W, LI X L. Distribution of film pressure and thickness in the sealing interface of reciprocating skeleton oil seal[J]. Lubrication Engineering, 2020, 45(7): 36-40.
11 景国权,田建辉,孙金绢,等.微尺度油膜动密封研究[J].西安工业大学学报, 2019, 39(5):547-552.
JING G Q, TIAN J H, SUN J J, et al. Study on micro-scale dynamic seal of oil film[J]. Journal of Xi'an Technological University, 2019, 39(5): 547-552.
12 NIKAS G K. Elastohydrodynamics and Mechanics of rectangular elastomeric seals for reciprocating piston rods[J]. Journal of Tribology, 2003, 125 (1): 60-69.
13 SALANT R F, MASER N, YANG B. Numerical model of a reciprocating hydraulic rod seal[J]. Journal of Tribology, 2007, 129(1): 91-97.
14 HAJJAM M, BONNEAU D. Influence of the roughness model on the thermo-elasto-hydrodynamic performance of lip seals[J]. Tribology International, 2006, 39(3): 198-205.
15 钟凯超.基于TEHL理论的液压动密封性能的研究[D].哈尔滨:哈尔滨工业大学,2017:12-29.
ZHONG K C. Research on the performance of hydraulic dynamic seal based on TEHL theory[D]. Harbin: Harbin Institute of Technology, 2017: 12-29.
16 DOWSON G, HIGGINSON G R. Elastohydrodynamic lubrication[C]. Oxford: Pergamon, 1977: 235.
17 王晓晶,陈帅,孙宇微,等.连续回转电液伺服马达组合密封特性研究[J].华中科技大学学报(自然科学版),2019,47(4):55-60.
WANG X J, CHEN S, SUN Y W, et al. Research on combined sealing characteristics of continuous rotary electro-hydraulic servo motor[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(4): 55-60.
18 孙健伟.高温高速旋转轴接触式密封材料研制及其密封性能研究[D].哈尔滨:哈尔滨工业大学,2014:88-106.
SUN J W. Development of high temperature and high speed rotating shaft contact sealing material and its sealing performance[D]. Harbin: Harbin Institute of Technology, 2014: 88-106.
19 ROELANDS C J A. Correlational aspects of the viscosity-temperature-pressure relationship of lubricating oils[J]. Journal of Lubrication Technology, 1971, 97(1): 209-210.
20 韩传军,胡洋,张杰,等.齿形滑环密封圈力学性能分析及结构改进[J].润滑与密封, 2018, 43(11):86-92. doi:10.3969/j.issn.0254-0150.2018.11.016
HAN C J, HU Y, ZHANG J, et al. Mechanical properties analysis and structure improvement of tooth and sliding ring combined seals[J]. Lubrication Engineering, 2018, 43(11): 86-92.
doi: 10.3969/j.issn.0254-0150.2018.11.016
21 吴长贵,索双富,黄乐,等.航空作动器VL密封圈唇口接触压力分析[J].液压气动与密封,2015,35(7):18-21. doi:10.3969/j.issn.1008-0813.2015.07.006
WU C G, SUO S F, HUNNG L, et al. Lip contact stress analysis of aircraft actuator VL seal[J]. Hydraulics Pneumatics & Seals, 2015, 35(7): 18-21.
doi: 10.3969/j.issn.1008-0813.2015.07.006
[1] 刘江,肖正明,张龙隆,刘卫标. 考虑摆线轮磨损的RV减速器传动精度可靠性分析与参数优化[J]. 工程设计学报, 2022, 29(6): 739-747.
[2] 祝效华,李聪,刘伟吉,谭宾,徐文. 强研磨性地层中PDC钻头井底热--固三场耦合研究[J]. 工程设计学报, 2022, 29(4): 446-455.
[3] 卢进南,刘扬,王连捷,杨润坤,丁振志. 基于改进Mask Scoring R-CNN的铲齿磨损检测研究[J]. 工程设计学报, 2022, 29(3): 309-317.
[4] 刘舒沁, 刘若晨, 孙见忠, 张进武. 风电齿轮箱磨损状态静电在线监测方法研究[J]. 工程设计学报, 2021, 28(2): 163-169.
[5] 邓晓帆, 任成祖, 陈洋, 陈光, 蔡智杰, 贺英伦. 基于摩擦磨损实验的双盘直槽研磨方法的研具选材研究[J]. 工程设计学报, 2020, 27(6): 720-728.
[6] 马亚超, 张鹏, 黄志强, 牛世伟, 谢豆, 邓嵘. 变温变载影响下PDC钻头的动态磨损趋势预测[J]. 工程设计学报, 2020, 27(5): 625-635.
[7] 刘若晨, 徐成, 王奎洋, 王益民, 孙见忠. 新型磨损区域静电传感器特性参数研究[J]. 工程设计学报, 2020, 27(5): 645-653.
[8] 张强, 刘志恒, 王海舰, 张赫哲. 截齿磨损程度的多特征信号融合识别研究[J]. 工程设计学报, 2018, 25(3): 278-287.
[9] 陈娅君, 龙威, 杨绍华, 柴辉, 巨少华. 粗糙度对微流道内流体连续自搬运的影响[J]. 工程设计学报, 2018, 25(3): 321-329.
[10] 李彦奎, 吕彦明, 倪明明. 基于正交试验的航空叶片精锻模具磨损分析[J]. 工程设计学报, 2017, 24(6): 632-637.
[11] 向正新, 李思行, 钱利勤, 夏成宇, 涂忆柳. 压裂球座冲蚀磨损规律研究和结构优化[J]. 工程设计学报, 2017, 24(5): 555-562.
[12] 田家林, 刘刚, 刘思璐, 周坤, 黄军航, 孙烨, 刘焱秋, 杨佳俊. 新型环嵌式PDC钻头几何特性与三维破岩力学研究[J]. 工程设计学报, 2017, 24(1): 70-76.
[13] 张延强,李秀红,任家骏,谭 彬. WK-75型矿用挖掘机斗齿的磨损分析[J]. 工程设计学报, 2015, 22(5): 493-498.
[14] 邹玉静,常德功. 考虑动载荷和表面粗糙度的渐开线齿轮摩擦因数的研究[J]. 工程设计学报, 2014, 21(3): 285-291.
[15] 冯 伟, 贺石中. 摩擦学系统特征信息关系的试验研究[J]. 工程设计学报, 2011, 18(4): 288-292.