Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (3): 325-333    DOI: 10.3785/j.issn.1006-754X.2023.00.043
机器人与机构设计     
小型陆空变形两栖机器人的设计与分析
杨展1(),李其朋1(),唐威2(),秦可成2,陈岁繁1,王铠迪1,刘阳3,邹俊2
1.浙江科技学院 机械与能源工程学院,浙江 杭州 310023
2.浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
3.安徽理工大学 机械工程学院,安徽 淮南 232001
Design and analysis of small land-air deformable amphibious robot
Zhan YANG1(),Qipeng LI1(),Wei TANG2(),Kecheng QIN2,Suifan CHEN1,Kaidi WANG1,Yang LIU3,Jun ZOU2
1.School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
2.State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
3.School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
 全文: PDF(3333 KB)   HTML
摘要:

多功能小型机器人具有广阔的应用前景。为满足不同的作业需求,设计了一种小型陆空变形两栖机器人,其既可以实现高效的地面移动,又能通过升空飞行来避开障碍物。该机器人采用双模式设计,地面模式采用两轮驱动的运动设计,飞行模式采用四旋翼飞行设计,2种模式的切换通过机器人倾转机构的支撑、伸展来实现。为了验证机器人的运动性能,首先采用SolidWorks软件建立了机器人整机模型,并对机器人进行运动学建模,推导得到了机器人模式切换过程的运动学方程。然后,对机器人舵机输出进行MATLAB仿真和开展机器人物理样机模式切换实验,得到的输出扭矩仿真结果与实测结果基本一致,其范围为0~250 N·cm。最后,利用机器人物理样机开展地面移动和空中飞行测试,并对其运动过程进行分析,以验证机器人陆空运动及模式切换的稳定性。研究结果验证了所设计机器人的有效性,且其具有较长的续航时间,可为陆空两栖机器人的设计提供参考。

关键词: 两栖机器人两轮驱动运动学建模稳定性    
Abstract:

Multi-functional small robots have broad application prospects. To meet different operational requirements, a small land-air deformable amphibious robot was designed, which could achieve efficient ground movement and avoid obstacles through takeoff flight. The robot adopted a dual-mode design, in which the ground mode adopted a two-wheel drive motion design, and the airplane mode adopted a four-rotor flight design. The switching between the two modes was realized through the support and extension of the robot tilting mechanism. In order to verify the motion performance of the robot, the whole robot model was established by SolidWorks software, the kinematics modeling for the robot was carried out, and the kinematics equation of the robot mode switching process was derived. Then, the robot servo output was simulated by MATLAB and the robot prototype mode switching experiment was carried out. The simulation results of the output torque were basically consistent with the measured results, with a range of 0-250 N·cm. Finally, the robot prototype was used to conduct ground movement and air flight tests, and its motion process was analyzed to verify the stability of the land-air motion and mode switching of the robot. The research results verify the effectiveness of the designed robot, and it has a long endurance, which can provide a reference for the design of land-air amphibious robots.

Key words: amphibious robot    two-wheel drive    kinematics modeling    stability
收稿日期: 2023-02-08 出版日期: 2023-07-06
CLC:  TH 122  
基金资助: 全国博士后创新人才支持计划项目(BX20220267);浙江省科技厅领雁项目(2022C04022)
通讯作者: 李其朋,唐威     E-mail: 402997860@qq.com;liqipeng@zust.edu.cn;weitang@zju.edu.cn
作者简介: 杨 展(1996—),男,浙江宁波人,硕士生,从事无人机设计与应用研究,E-mail: 402997860@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨展
李其朋
唐威
秦可成
陈岁繁
王铠迪
刘阳
邹俊

引用本文:

杨展,李其朋,唐威,秦可成,陈岁繁,王铠迪,刘阳,邹俊. 小型陆空变形两栖机器人的设计与分析[J]. 工程设计学报, 2023, 30(3): 325-333.

Zhan YANG,Qipeng LI,Wei TANG,Kecheng QIN,Suifan CHEN,Kaidi WANG,Yang LIU,Jun ZOU. Design and analysis of small land-air deformable amphibious robot[J]. Chinese Journal of Engineering Design, 2023, 30(3): 325-333.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.043        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I3/325

图1  小型陆空变形两栖机器人整体结构
图2  小型陆空变形两栖机器人物理样机
图3  小型陆空变形两栖机器人控制系统模块
图4  机臂三维模型
图5  桨叶功率与转速的关系曲线
图6  桨叶拉力与转速的关系曲线
图7  机器人正模式切换过程
图8  机器人正模式切换的三维运动学模型
图9  右驱动轮视图下机器人的正模式切换过程
参数量值

整机尺寸

(长×宽×高)

地面模式:356 mm×205 mm×205 mm

飞行模式:534 mm×535 mm×356 mm

驱动轮直径205 mm
质量1 820 g
飞行高度18 m
表1  机器人物理样机的尺寸及性能参数
图10  正模式切换过程中舵机扭矩输出仿真曲线
图11  逆模式切换过程中舵机扭矩输出仿真结果
图12  正模式切换过程中舵机的拉力变化情况
图13  逆模式切换过程中舵机的拉力变化情况
图14  机器人物理样机模式切换实验结果
续航性能参数地面模式飞行模式
运行时间/min17015
运动距离/m4 0801 350
平均速度/(m/s)0.41.5
表2  机器人物理样机续航性能参数
图15  机器人物理样机户外性能测试现场
1 杨斌,何玉庆,韩建达,等.作业型飞行机器人研究现状与展望[J].机器人,2015,37(5):628-640. doi:10.13973/j.cnki.robot.2015.0628
YANG B, HE Y Q, HAN J D, et al. Survey on aerial manipulator systems[J]. Robot, 2015, 37(5): 628-640.
doi: 10.13973/j.cnki.robot.2015.0628
2 XU H, YANG Z, CHANG L, et al. ARSS: a novel aerial robot performs tree pruning tasks[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 8883655. doi:10.1155/2020/8883655
doi: 10.1155/2020/8883655
3 MICHAEL N, SHEN S, MOHTA K, et al. Collaborative mapping of an earthquake damaged building via ground and aerial robots[J]. Journal of Field Robotics, 2012, 29(5): 832-841.
4 钱善华,葛世荣,王永胜,等.救灾机器人的研究现状与煤矿救灾的应用[J].机器人,2006,28(3):350-354. doi:10.13973/j.cnki.robot.2006.03.021
QIAN S H, GE S R, WANG Y S, et al. Research status of the disaster rescue robot and its applications to the mine rescue[J]. Robot, 2006, 28(3): 350-354.
doi: 10.13973/j.cnki.robot.2006.03.021
5 刘超,谭稀岑,姚燕安,等.一种新型可变形轮腿式机器人的设计与分析[J].机械工程学报,2022,58(3):65-74. doi:10.3901/jme.2022.03.065
LIU C, TAN X C, YAO Y A, et al. Design and analysis of a novel deformable wheel-legged robot[J]. Journal of Mechanical Engineering, 2022, 58(3): 65-74.
doi: 10.3901/jme.2022.03.065
6 LI K L, HAN B L, ZHAO Y T, et al. Motion planning and simulation of combined land-air amphibious robot[J]. IOP Conference Series: Materials Science and Engineering, 2018, 428: 012057. doi:10.1088/1757-899X/428/1/012057
doi: 10.1088/1757-899X/428/1/012057
7 朱航,施家栋,王建中,等.微小型陆空两栖机器人地面移动控制方法[J].现代电子技术,2015,38(8):54-57,61. doi:10.16652/j.issn.1004-373x.2015.08.043
ZHU H, SHI J D, WANG J Z, et al. Terrestrial locomotion control method of miniature land-air hybrid robot[J]. Modern Electronics Technique, 2015, 38(8): 54-57, 61.
doi: 10.16652/j.issn.1004-373x.2015.08.043
8 LATSCHA S, KOFRON M, STROFFOLINO A, et al. Design of a hybrid exploration robot for air and land deployment (H.E.R.A.L.D) for urban search and rescue applications[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, Sep. 14-18, 2014. doi:10.1109/IROS.2014.6942808
doi: 10.1109/IROS.2014.6942808
9 WANG H, SHI J D, WANG J Z, et al. Design and modeling of a novel transformable land/air robot[J]. International Journal of Aerospace Engineering, 2019, 2019: 2064131. doi:10.1155/2019/2064131
doi: 10.1155/2019/2064131
10 洪向共,钟地长,赵庆敏.基于多传感器融合的陆空两栖机器人移动控制系统设计[J].科学技术与工程,2020,20(8):3103-3108. doi:10.3969/j.issn.1671-1815.2020.08.024
HONG X G, ZHONG D C, ZHAO Q M. Design of mobile control system for air-ground amphibious robot based on multi-sensor fusion[J]. Science Technology and Engineering, 2020, 20(8): 3103-3108.
doi: 10.3969/j.issn.1671-1815.2020.08.024
11 LI B B, MA L, WANG D, et al. Driving and tilt-hovering: an agile and manoeuvrable aerial vehicle with tiltable rotors[J]. IET Cyber-Systems and Robotics, 2021, 3(2): 103-115. doi:10.1049/csy2.12014
doi: 10.1049/csy2.12014
12 王正杰,马建,朱航,等.陆空两栖机器人飞行控制系统设计[J].北京理工大学学报,2015,35(12):1257-1261. doi:10.15918/j.tbit1001-0645.2015.12.009
WANG Z J, MA J, ZHU H, et al. Control of an air-ground amphibious vehicle flight system[J]. Transactions of Beijing Institute of Technology, 2015, 35(12): 1257-1261.
doi: 10.15918/j.tbit1001-0645.2015.12.009
13 雷涛,徐康,汪首坤,等.并联六轮腿机器人机身平稳性控制方法研究[J].机械工程学报,2021,57(21):34-44. doi:10.3901/jme.2021.21.034
LEI T, XU K, WANG S K, et al. Research on stability control method of parallel six-wheel-legged robot[J]. Journal of Mechanical Engineering, 2021, 57(21): 34-44.
doi: 10.3901/jme.2021.21.034
14 郑耀,张继发,宋晓啸,等.可变形飞行器快速总体设计方法研究与算法实现[J].导弹与航天运载技术,2022,8(6):51-56.
ZHENG Y, ZHANG J F, SONG X X, et al. Research and algorithm implementation of rapid overall design method for morphing aircraft[J]. Missiles and Space Vehicles, 2022, 8(6): 51-56.
15 POUNDS P, MAHONY R, CORKE P. Modelling and control of a large quadrotor robot[J]. Control Engineering Practice, 2010, 18(7): 691-699. doi:10.1016/j.conengprac. 2010.02.008
doi: 10.1016/j.conengprac. 2010.02.008
16 吴翰,王正平,周洲,等.多旋翼固定翼无人机多体动力学建模[J].西北工业大学学报,2019,37(5):928-934. doi:10.3969/j.issn.1000-2758.2019.05.010
WU H, WANG Z P, ZHOU Z, et al. Modeling and simulation for multi-rotor fixed-wing UAV based on multibody dynamics[J]. Journal of Northwestern Polytechnical University, 2019, 37(5): 928-934.
doi: 10.3969/j.issn.1000-2758.2019.05.010
17 杜明,赵燕飞,范书瑞,等.多旋翼飞行器建模与控制器设计[J].科学技术与工程,2021,21(17):7180-7186. doi:10.3969/j.issn.1671-1815.2021.17.029
DU M, ZHAO Y F, FAN S R, et al. Incident edge detection technology of sensor network for environment monitoring[J]. Science Technology and Engineering, 2021, 21(17): 7180-7186.
doi: 10.3969/j.issn.1671-1815.2021.17.029
18 武仲芝,王雷,马建平,等.基于系统架构的典型四旋翼无人机设计[J].计算机科学,2019,46(11A):575-579.
WU Z Z, WANG L, MA J P, et al. Design of typical quadrotor UAV based on system architecture[J]. Computer Science, 2019, 46(11A): 575-579.
19 杨洋,陈维芹,陈仁良.四旋翼倾转飞行器操纵冗余设计[J].南京航空航天大学学报,2020,52(2):255-263. doi:10.16356/j.1005-2615.2020.02.011 .
YANG Y, CHEN W Q, CHEN R L. Design of redundant manipulation for quad tilt rotor aircraft[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(2): 255-263.
doi: 10.16356/j.1005-2615.2020.02.011
[1] 况雨春,钟辉,钟良春. 类圆弧线型螺杆马达的设计与研究[J]. 工程设计学报, 2023, 30(5): 640-649.
[2] 曾光, 边强, 赵春江, 殷玉枫, 冯毅杰. 变参数下角接触球轴承保持架的稳定性与振动特性分析[J]. 工程设计学报, 2020, 27(6): 735-743.
[3] 黄泽好, 张振华, 黄旭, 雷伟. 鼓式制动器制动不稳定时变特性分析[J]. 工程设计学报, 2019, 26(6): 714-721.
[4] 杨少沛, 李蒙, 王得胜. 基于15F2K60S2的农用无人机电源监控仪表设计[J]. 工程设计学报, 2019, 26(3): 330-337.
[5] 唐林, 许志沛, 贺田龙, 敖维川. 基于BP神经网络的转动架稳定性灵敏度分析[J]. 工程设计学报, 2018, 25(5): 576-582.
[6] 张日成, 赵炯, 吴青龙, 熊肖磊, 周奇才, 焦洪宇. 考虑结构稳定性的变密度拓扑优化方法[J]. 工程设计学报, 2018, 25(4): 441-449.
[7] 林敏, 谢宗亮, 杨迎新, 李维均, 陈炼, 任海涛. 分散扶正与保径的新型PDC钻头设计与现场试验[J]. 工程设计学报, 2018, 25(1): 43-49.
[8] 周智勇, 韩章程. 基于物元分析与云模型的地下工程围岩稳定性评价[J]. 工程设计学报, 2017, 24(1): 57-63.
[9] 柳江, 陈朋, 李道飞. 基于相平面方法的车辆稳定性控制[J]. 工程设计学报, 2016, 23(5): 409-416.
[10] 侯勇俊, 余乐, 方潘, 陈普春. 三激振器双质体振动系统自同步特性研究[J]. 工程设计学报, 2016, 23(1): 82-89.
[11] 夏拥军,王腾飞,张宏生. 腰绳装置对起重机吊臂起重平面外稳定性的影响[J]. 工程设计学报, 2015, 22(5): 394-398.
[12] 夏拥军,王腾飞,张宏生. 腰绳装置对起重机吊臂起重平面外稳定性的影响[J]. 工程设计学报, 2015, 22(4): 394-398.
[13] 张 强,赵 亮. 基于模糊灰色关联的三轴汽车操纵稳定性分析[J]. 工程设计学报, 2015, 22(1): 58-65.
[14] 张 宏,董 磊,赵秀梅. 基于软轴式随动控制的运煤车液压转向系统分析[J]. 工程设计学报, 2015, 22(1): 89-94.
[15] 李文军,周奇才,吴青龙,熊肖磊. 几何非线性臂架结构稳定拓扑优化[J]. 工程设计学报, 2014, 21(5): 449-455.