Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (4): 503-511    DOI: 10.3785/j.issn.1006-754X.2023.00.052
机械优化设计     
大转动惯量缠绕机加减速曲线优化设计
窦方健1(),邱清盈1(),管成1,邵锦杰1,吴海峰2
1.浙江大学 机械工程学院,浙江 杭州 310027
2.中国核工业集团有限公司 第八研究所,上海 201800
Optimization design of acceleration and deceleration curve of winding machine with large moment of inertia
Fangjian DOU1(),Qingying QIU1(),Cheng GUAN1,Jinjie SHAO1,Haifeng WU2
1.School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2.The Eighth Research Institute, China National Nuclear Corporation, Shanghai 201800, China
 全文: PDF(2619 KB)   HTML
摘要:

针对大转动惯量碳纤维缠绕机的加速和减速阶段运行不平稳、传动件易失效破坏等问题,提出了一种基于改进型Sigmoid加减速曲线的主轴运行曲线优化方案。首先,利用五次多项式对传统Sigmoid加减速曲线的跃变处进行补偿,以约束曲线起始点、衔接点、终止点的速度、加速度和急动度(加加速度)。然后,基于改进曲线的速度与加速度函数建立缠绕机的负载扭矩、电机输出功率、主轴强度与刚度以及缠绕圈数的数学模型,并以各阶段运行时长为设计变量、以电机最大输出功率最小和总运行时长最短为优化目标对曲线进行多目标优化,根据缠绕圈数、传动件强度与刚度等的约束条件,利用多目标遗传算法NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ,非支配排序遗传算法-Ⅱ)求解模型的非支配解集,并利用比重选取函数选择最优解。最后,通过AMESim-ADAMS联合仿真对比加减速曲线优化前后缠绕机的运行效果。结果表明:优化后缠绕机的总运行时长、最大加速度、最大负载扭矩和最大输出功率分别降低了41.7%,75.8%,75.5%和72.8%,且主轴的运行曲线更加平滑,验证了优化方案的可行性。研究结果为大转动惯量旋转设备的运行不平稳或传动件失效问题提供了一种新的解决思路。

关键词: 大转动惯量缠绕机加减速曲线多目标优化遗传算法    
Abstract:

Aiming at the problems of unstable operation and easy failure of transmission parts during acceleration and deceleration of carbon fiber winding machine with large moment of inertia, an optimization scheme of spindle operation curve based on improved Sigmoid acceleration and deceleration curve was proposed. Firstly, the quintic polynomial was used to compensate the mutation of the traditional Sigmoid acceleration and deceleration curve by constraining the velocity, acceleration and jerk of the starting point, connecting point and ending point of the curve. Then, the mathematical models of load torque, motor output power, strength and stiffness of spindle and number of winding coils were established based on the velocity and acceleration functions of the improved curve. The multi-objective optimization for the curve was carried out with the operating time of each stage as the design variables and the maximum motor output power and total operating time as the optimization objectives. Under the constraints of the number of winding coils, strength and stiffness of transmission parts and so on, the non-dominated solution set was solved by the multi-objective genetic algorithm NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ), and the optimal solution was selected by the proportion selection function. Finally, through AMESim-ADAMS co-simulation, the operation effects of winding machine before and after acceleration and deceleration curve optimization were compared. The results showed that the total operating time, maximum acceleration, maximum load torque and maximum output power of the optimized winding machine were reduced by 41.7%, 75.8%, 75.5% and 72.8%, and the spindle operation curve was smoother, which verified the feasibility of the optimization scheme. The research results provide a new solution for the problem of unstable operation or transmission parts failure of rotating equipment with large moment of inertia.

Key words: large moment of inertia    winding machine    acceleration and deceleration curve    multi-objective optimization    genetic algorithm
收稿日期: 2022-12-29 出版日期: 2023-09-04
CLC:  TH 123  
基金资助: 浙江省重点科技计划项目(2019C01053);2018智能制造新模式应用项目(110201D01801)
通讯作者: 邱清盈     E-mail: 2397351750@qq.com;medesign@zju.edu.cn
作者简介: 窦方健(1997—),男,江苏常熟人,硕士生,从事电机加减速曲线优化研究,E-mail: 2397351750@qq.com, https://orcid.org/0000-0002-9108-9244
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
窦方健
邱清盈
管成
邵锦杰
吴海峰

引用本文:

窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.

Fangjian DOU,Qingying QIU,Cheng GUAN,Jinjie SHAO,Haifeng WU. Optimization design of acceleration and deceleration curve of winding machine with large moment of inertia[J]. Chinese Journal of Engineering Design, 2023, 30(4): 503-511.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.052        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/503

图1  碳纤维缠绕机结构示意
图2  传统Sigmoid速度曲线
图3  传统Sigmoid加速度曲线
图4  改进型Sigmoid速度曲线
图5  改进型Sigmoid加速度曲线
图6  缠绕机加减速曲线的多目标优化模型关系
参数量值参数量值
Jm1 129.14 kg·m2Ssσ18.415
η10.94τs313.2 MPa
η20.99Wτ8.284×10-5 m3
vm2.094 4 rad/sG8.1×104 MPa
T23 sIP1.868×10-6 m3
M1 214.56 N·mnz2.3圈
W4.142×10-5 m3[σ-1]70 MPa
Sσ3.780 5S1.5
Kτ3.028 7Ss1.6
?τ0.05[φ]1.5°
τ-1200 MPaML6 300 N·m
WT8.284×10-5 m3
表1  缠绕机主要参数
图7  缠绕机加减速曲线多目标优化模型的Pareto前沿
图8  缠绕机的AMESim-ADAMS联合仿真模型
图9  优化前后缠绕机运行效果对比
优化前后总运行时长Tz/s最大加速度amax/(rad/s2)最大负载扭矩MT max/(N·m)最大输出功率Pmax/kW
改进率/%41.775.875.572.8
优化前17.988.5529 650.0111.810
优化后10.482.0672 366.783.211
表2  优化前后缠绕机运行性能对比
1 LIU W, XU G W, JIANG X M. Discrete global sliding mode control for time-delay carbon fiber multilayer diagonal loom[J]. IEEE Access, 2017, 5: 15326-15331.
2 HSIEH Y M, LIN C Y, YANG Y R, et al. Automatic virtual metrology for carbon fiber manufacturing[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2730-2737.
3 王征,董九志,陈云军,等.碳纤维增强碳/碳坩埚预制体柔性缠绕成形系统设计与实验研究[J].中国机械工程,2023,34(10):1184-1190. doi:10.3969/j.issn.1004-132X.2023.10.007
WANG Z, DONG J Z, CHEN Y J, et al. Design and experimental study of a flexible winding forming system for carbon fiber reinforced carbon/carbon crucible preform[J]. China Mechanical Engineering, 2023, 34(10): 1184-1190.
doi: 10.3969/j.issn.1004-132X.2023.10.007
4 DACKWEILER M, MAYER T, COUTANDIN S, et al. Modeling and optimization of winding paths to join lightweight profiles with continuous carbon fibers[J]. Production Engineering: Research and Development, 2019, 13(5): 519-528.
5 LI D W, HUA S Y, LI Z Y, et al. Automatic vision-based online inspection system for broken-filament of carbon fiber with multiscale feature learning[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5014412.
6 杨海.复合材料纤维缠绕机器人关键技术研究[D]. 哈尔滨:哈尔滨理工大学,2020:81-103.
YANG H. Research on key technologies of filament winding robot of composite[D]. Harbin: Harbin Engineering University, 2020: 81-103.
7 李浩,杨建成,蒋秀明.考虑齿轮动态啮合力的碳纤维立体织机引纬机构设计研究[J].机械传动,2016,40(8):67-71.
LI H, YANG J C, JIANG X M. Research of weft insertion mechanism design of carbon fiber multilayer loom with considering the gear dynamic meshing force[J]. Journal of Mechanical Transmission, 2016, 40(8): 67-71.
8 张鹏,张学良,杨瑞峰.光纤环圈数控缠绕机主轴结构优化设计[J].中北大学学报(自然科学版),2014,35(3):275-278,298.
ZHANG P, ZHANG X L, YANG R F. Optimization design for the spindle structure of fiber optic ring NC winding machine[J]. Journal of North University of China (Natural Science Edition), 2014, 35(3): 275-278, 298.
9 方佳伟,蔡锦达,姚莹,等.基于Sigmoid函数的S型加减速控制方法研究[J].机电工程,2018,35(9):933-938. doi:10.3969/j.issn.1001-4551.2018.09.006
FANG J W, CAI J D, YAO Y, et al. S-type acceleration and deceleration control method based on Sigmoid-function[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(9): 933-938.
doi: 10.3969/j.issn.1001-4551.2018.09.006
10 REMEGIO B, CONFESOR J, GERALD W. Automatic calibration of hydrologic models with multi-objective evolutionary algorithm and Pareto optimization[J]. Journal of the American Water Resources Association, 2007, 43(4): 981-989.
11 HAMES S. Modeling and multi-objective Pareto optimization of new cyclone separators using CFD, ANNs and NSGA II algorithm[J]. Advanced Powder Technology, 2016, 27(5): 2277-2284.
12 濮良贵,陈国定,吴立言.机械设计[M].北京:高等教育出版社,2013:22-115.
PU L G, CHEN G D, WU L Y. Mechanical design[M]. Beijing: Higher Education Press, 2013: 22-115.
13 刘鸿文.材料力学[M].北京:高等教育出版社,2017:30-292. doi:10.1051/ncssc/201701045
LIU H W. Mechanics of materials[M]. Beijing: Higher Education Press, 2017: 30-292.
doi: 10.1051/ncssc/201701045
14 WANG S P, ZHAO D M, YUAN J Z, et al. Application of NSGA-Ⅱ algorithm for fault diagnosis in power system[J]. Electric Power Systems Research, 2019, 175: 105893.
15 SUN Y, LIN F H, XU H T. Multi-objective optimization of resource scheduling in fog computing using an improved NSGA-Ⅱ[J]. Wireless Personal Communications, 2018, 102: 1369-1385.
16 HUA Y Z, ZHU H Q, GAO M, et al. Multi-objective optimization design of permanent magnet assisted bearingless synchronous reluctance motor using NSGA-Ⅱ[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 10477-10487.
17 LIU Y, WANG X F, ZHANG Y, et al. An integrated flow shop scheduling problem of preventive maintenance and degradation with an improved NSGA-Ⅱ algorithm[J]. IEEE Access, 2023, 11: 3525-3544.
18 宋昌兴,阮景奎,王宸.基于混合多目标遗传算法的柔性作业车间调度问题研究[J].机电工程,2021,38(2):169-176. doi:10.3969/j.issn.1001-4551.2021.02.005
SONG C X, RUAN J K, WANG C. Flexible job shop scheduling problem based on hybrid multi-objective genetic algorithm[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(2): 169-176.
doi: 10.3969/j.issn.1001-4551.2021.02.005
[1] 赵迪,陈果,陈小利,王熊锦. 轮式搜救机器人地形自适应机构设计及越障性能分析[J]. 工程设计学报, 2023, 30(5): 579-589.
[2] 米鑫,李虹,郭彦青,高宏伟,王浩楠,宁羿帆. 基于线性回归的单柱塞泵单向阀参数优化[J]. 工程设计学报, 2022, 29(6): 705-712.
[3] 刘江,肖正明,张龙隆,刘卫标. 考虑摆线轮磨损的RV减速器传动精度可靠性分析与参数优化[J]. 工程设计学报, 2022, 29(6): 739-747.
[4] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[5] 丁述勇, 张征, 丁文洁, 林勇. 多巷道式立体车库优化设计与车辆存取策略研究[J]. 工程设计学报, 2021, 28(4): 443-449.
[6] 苏芳, 罗茹楠, 刘艳明, 王晨升. 双轴联动进给系统多目标优化设计与研究[J]. 工程设计学报, 2020, 27(4): 456-462.
[7] 高启升, 朱兴华, 于延凯, 郑荣. UUV耐压结构多目标优化设计[J]. 工程设计学报, 2020, 27(2): 232-238.
[8] 张帅, 韩军, 涂群章, 杨小强, 杨旋. 基于GA-NLP的剪刀式折叠桥梁展桥机构多目标优化设计[J]. 工程设计学报, 2020, 27(1): 67-75.
[9] 刘春青, 王文汉. 基于人工神经网络-遗传算法的展成法球面精密磨削参数优化[J]. 工程设计学报, 2019, 26(4): 395-402.
[10] 王哲, 陈勇, 曹展, 李光鑫, 左扣成. 纯电动汽车两挡变速器减振降噪研究[J]. 工程设计学报, 2019, 26(3): 280-286.
[11] 马天兵, 王孝东, 杜菲, 王鑫泉. 基于GA-SVM的刚性罐道故障诊断[J]. 工程设计学报, 2019, 26(2): 170-176.
[12] 杨晨光, 邵宝东, 王丽凤, 杨洋. 基于热阻网络模型的硅基微槽热沉多目标优化设计[J]. 工程设计学报, 2018, 25(4): 426-433.
[13] 邓星, 于兰峰, 雷聪, 徐江平, 肖泽平. 基于响应面法的无轨伸缩式门式起重机轻量化设计[J]. 工程设计学报, 2018, 25(3): 288-294.
[14] 唐维, 谢延敏, 黄仁勇, 张飞, 潘贝贝. 基于自适应SVR-ELM混合近似模型的镁合金差温成形本构参数反求[J]. 工程设计学报, 2017, 24(5): 536-544.
[15] 杨绍勇, 雷飞, 陈园. 基于铺层设计特征的碳纤维增强复合材料悬架控制臂结构优化[J]. 工程设计学报, 2016, 23(6): 600-605,619.