Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (2): 187-195    DOI: 10.3785/j.issn.1006-754X.2022.00.011
优化设计     
一种工业机器人多目标轨迹优化算法
李琴1(),贾英崎1,黄玉峰2,李刚1,叶闯1
1.西南石油大学 机电工程学院,四川 成都 610500
2.中国石油天然气集团有限公司 东方地球物理勘探有限责任公司,河北 涿州 072750
A multi-objective trajectory optimization algorithm for industrial robot
Qin LI1(),Ying-qi JIA1,Yu-feng HUANG2,Gang LI1,Chuang YE1
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Eastern Geophysical Exploration Co. , Ltd. , China National Petroleum Corporation, Zhuozhou 072750, China
 全文: PDF(2338 KB)   HTML
摘要:

为解决工业机器人工作效率低、能耗损失严重和关节冲击磨损较大的问题,提出了一种基于布谷鸟搜索(cuckoo search, CS)算法和非支配排序遗传算法-II(non-dominated sorting genetic algorithm-II, NSGA-II)的混合算法(简称为CSNSGA-II),用于机器人的轨迹优化。采用5次非均匀有理B样条(non-uniform rational B-splines, NURBS)曲线作为工业机器人的轨迹规划曲线,同时以运动时间、能耗和冲击磨损为优化目标构建相应的多目标轨迹优化模型,并在速度、加速度和加加速度的约束下采用CSNSGA-II进行轨迹优化。CSNSGA-II以Tent混沌映射初始化时间序列,采用不可行度算法将解分为可行解与不可行解,并利用改进的CS算法对不可行解进行处理。利用MATLAB软件对6R勃朗特机器人进行建模仿真,并对得到的非支配解集和归一化加权迭代最优值进行对比分析。仿真结果表明,相比于NSGA-II、多目标粒子群优化(multi-objective particle swarm optimization, MOPSO)算法,所提出的CSNSGA-II可更有效地对6R勃朗特机器人的轨迹进行优化,所得非支配解集更加均匀且接近真实Pareto前沿,最终得到的轨迹曲线较为平滑,可同时满足6R勃朗特机器人的高效率、低能耗及少冲击磨损的要求。所提出的方法可为进一步推动工业机器人在生产中的广泛应用以及提高生产能力和效率提供指导。

关键词: 工业机器人轨迹规划非均匀有理B样条(NURBS)曲线多目标优化非支配排序遗传算法-II(NSGA-II)布谷鸟搜索(CS)算法    
Abstract:

In order to solve the problems of low work efficiency, serious energy loss and large joint impact wear of industrial robots, a hybrid algorithm (referred to as CSNSGA-II) based on cuckoo search (CS) algorithm and non-dominated sorting genetic algorithm-II (NSGA-II) was proposed for trajectory optimization of robots. The quintic non-uniform rational B-splines (NURBS) curve was used as the trajectory planning curve of the industrial robot. At the same time, the motion time, energy consumption and impact wear were taken as the optimization objectives and the corresponding multi-objective trajectory optimization model was constructed. Under the constraints of speed, acceleration and jerk, the CSNSGA-II was used to optimize trajectory. The CSNSGA-II initialized the time series with the Tent chaotic map, and used the infeasibility algorithm to divide the solutions into feasible solution and infeasible solution, and then the infeasible solution was processed by the improved CS algorithm. The 6R Bronte robot was modeled and simulated by using the MATLAB software, and the obtaind non-dominated solution set and the normalized weighted iterative optimal value were compared and analyzed. The simulation results showed that, compared with the NSGA-II and the multi-objective particle swarm optimization (MOPSO) algorithm, the proposed CSNSGA-II could optimize the trajectory of 6R Bronte robot more effectively, and the non-dominated solution set was more uniform and close to the real Pareto front, and the final trajectory curve was relatively smooth, which could meet the requirements of high efficiency, low energy consumption and less impact wear of 6R Bronte robot at the same time. The proposed method can provide guidance for further promoting the widespread application of industrial robots in production and improving production capacity and efficiency.

Key words: industrial robot    trajectory planning    non-uniform rational B-splines (NURBS) curve    multi-objective optimization    non-dominated sorting genetic algorithm-II (NSGA-II)    cuckoo search (CS) algorithm
收稿日期: 2021-03-16 出版日期: 2022-05-06
CLC:  TP 242  
基金资助: 国家自然科学基金资助项目(41902326);四川省科技计划项目(22GJHZ0284);中国石油前瞻性基础性战略性技术攻关项目(2021DJ3601);南充市-西南石油大学市校科技战略合作专项(SXHZ048)
作者简介: 李 琴(1970—),女,四川乐山人,副教授,硕士,从事智能机器人技术研究,E-mail:905973416@qq.comhttps://orcid.org/0000-0001-9838-2390
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李琴
贾英崎
黄玉峰
李刚
叶闯

引用本文:

李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.

Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.011        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I2/187

图1  CSNSGA-II流程
图2  6R勃朗特机器人实物
关节mp1p2p3p4p5p6p7p8
1-14.40-25.20-43.20-64.80-86.40-79.20-115.20-126.00
2-115.20-93.60-82.80-72.00-50.40-74.73-43.20-28.80
354.0039.6028.8010.80-3.6044.507.200
400000000
561.2054.0042.1564.3252.3430.2336.0028.80
675.6064.8046.8025.203.6010.80-25.20-36.00
表1  6R勃朗特机器人各关节轨迹点的位置 (°)
图3  6R勃朗特机器人启动时刻的位置
图4  6R勃朗特机器人停止时刻的位置
关节mvm /(°)·s-1am /(°)·s-2jm /(°)·s-3
11006060
2956066
31007585
41507070
51309075
61108070
表2  6R勃朗特机器人各关节的运动学约束
图5  基于不同算法的6R勃朗特机器人Pareto前沿分布对比
优化解S1/sS2/(°)·s-2S3/(°)·s-3
A113.640 535.780 046.704 7
B119.380 417.173 114.517 7
C134.914 75.113 72.409 3
A214.479 339.637 548.826 2
B219.399 618.770 517.431 0
C234.905 25.470 52.752 5
A317.183 743.795 248.581 1
B319.922 217.919 215.717 6
C335.141 95.047 92.536 4
表3  基于不同算法的6R勃朗特机器人轨迹优化结果对比
图6  基于不同算法的6R勃朗特机器人轨迹优化目标归一化加权迭代最优值对比
图7  6R勃朗特机器人各关节的位置—时间曲线
图8  6R勃朗特机器人各关节的速度—时间曲线
图9  6R勃朗特机器人各关节的加速度—时间曲线
图10  6R勃朗特机器人各关节的加加速度—时间曲线
1 居鹤华,付荣.基于GA的时间最优机械臂轨迹规划算法[J].控制工程,2012,19(3):472-477. doi:10.3969/j.issn.1671-7848.2012.03.026
JU He-hua, FU Rong. Time-optimal trajectory planning algorithm based on GA for manipulator[J]. Control Engineering of China, 2012, 19(3): 472-477.
doi: 10.3969/j.issn.1671-7848.2012.03.026
2 HUANG J, HU P, WU K, et al. Optimal time-jerk trajectory planning for industrial robots[J]. Mechanism and Machine Theory, 2018, 121: 530-544. doi:10.1016/j.mechmachtheory.2017.11.006
doi: 10.1016/j.mechmachtheory.2017.11.006
3 ROUT A, DEEPAK B, BISWAL B B, et al. Optimal trajectory planning of industrial robot for improving positional accuracy[J]. Industrial Robot, 2021, 48(1): 71-83. doi:10.1108/IR-07-2019-0148
doi: 10.1108/IR-07-2019-0148
4 王会方,朱世强,吴文祥.基于INSGA-Ⅱ算法的机械手多目标轨迹规划[J].浙江大学学报(工学版),2012,46(4):622-628. doi:10.3785/j.issn.1008-973X.2012.04.008
WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. INSGA-II based multi-objective trajectory planning for manipulators[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(4): 622-628.
doi: 10.3785/j.issn.1008-973X.2012.04.008
5 SHI Z, PENG Y, WEI W. Optimal sizing of DGs and storage for microgrid with interruptible load using improved NSGA-II[C]//2014 IEEE Congress on Evolutionary Computation (CEC), Beijing: IEEE, 2014: 2108-2115. doi:10.1109/cec.2014.6900414
doi: 10.1109/cec.2014.6900414
6 YANG Xin-she, Suash DEB. Cuckoo search via Lévy flights[C]//2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, Dec. 9-11, 2009. doi:10.1109/NABIC.2009.5393690
doi: 10.1109/NABIC.2009.5393690
7 SAVSANI P, JHALA R L, SAVSANI V J. Comparative study of different metaheuristics for the trajectory planning of a robotic arm[J]. IEEE Systems Journal, 2014, 10(2): 697-708. doi:10.1109/JSYST.2014.2342292
doi: 10.1109/JSYST.2014.2342292
8 米根锁,李明.布谷鸟搜索算法在空间机械臂轨迹规划中的应用研究[J].机械科学与技术,2018,37(12):1805-1810.doi:10.13433/j.cnki.1003-8728.20180079
MI Gen-suo, LI Ming. Applying cuckoo search algorithm to path planning of space manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1805-1810.
doi: 10.13433/j.cnki.1003-8728.20180079
9 WANG W, TAO Q, CAO Y, et al. Robot time-optimal trajectory planning based on improved cuckoo search algorithm[J]. IEEE Access, 2020, 8: 86923-86933. doi:10.1109/access.2020.2992640
doi: 10.1109/access.2020.2992640
10 YANG Xin-she, Suash DEB. Cuckoo search: recent advances and applications[J]. Neural Computing and Applications, 2014, 24(1): 169-174. doi:10.1007/s00521-013-1367-1
doi: 10.1007/s00521-013-1367-1
11 单梁,强浩,李军,等.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. doi:10.3321/j.issn:1001-0920.2005.02.013
SHAN Liang, QIANG Hao, LI Jun, et al. Chaotic optimization algorithm based on Tent map[J]. Control and Decision, 2005, 20(2): 179-182
doi: 10.3321/j.issn:1001-0920.2005.02.013
12 ASAFUDDOULA M, RAY T, SARKER R, et al. An adaptive constraint handling approach embedded MOEA/D[C]//2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Jun. 10-15, 2012. doi: 10.1109/CEC.2012.6252868
doi: 10.1109/CEC.2012.6252868
13 李小为,胡立坤,王琥.速度约束下PSO的六自由度机械臂时间最优轨迹规划[J].智能系统学报,2015,10(3):393-398. doi:10.3969/j.issn.1673-4785.201404035
LI Xiao-wei, HU Li-kun, WANG Hu. PSO-based time optimal trajectory planning for six degrees of freedom robot manipulators with speed constraints[J]. CAAI Transactions on Intelligent Systems, 2015, 10(3): 393-398.
doi: 10.3969/j.issn.1673-4785.201404035
14 李海虹,林贞国,杜娟,等.挖掘机自主挖掘分段可变阶多项式轨迹规划[J].农业机械学报,2016,47(4):319-325. doi:10.6041/j.issn.1000-1298.2016.04.042
LI Hai-hong, LIN Zhen-guo, DU Juan, et al. Piecewise polynomial with variable order in trajectory planning for autonomous mining[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 319-325.
doi: 10.6041/j.issn.1000-1298.2016.04.042
[1] 窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.
[2] 张鹏程,牛建业,刘承磊,宋井科,王立鹏,张建军. 牵引式下肢康复机器人机构参数优化及轨迹规划[J]. 工程设计学报, 2022, 29(6): 695-704.
[3] 刘江,肖正明,张龙隆,刘卫标. 考虑摆线轮磨损的RV减速器传动精度可靠性分析与参数优化[J]. 工程设计学报, 2022, 29(6): 739-747.
[4] 时培成,陈旭,杨爱喜,章亮. 4WID-4WIS智能车阿克曼转向轨迹规划及位置估算[J]. 工程设计学报, 2022, 29(2): 123-132.
[5] 苏芳, 罗茹楠, 刘艳明, 王晨升. 双轴联动进给系统多目标优化设计与研究[J]. 工程设计学报, 2020, 27(4): 456-462.
[6] 高启升, 朱兴华, 于延凯, 郑荣. UUV耐压结构多目标优化设计[J]. 工程设计学报, 2020, 27(2): 232-238.
[7] 张帅, 韩军, 涂群章, 杨小强, 杨旋. 基于GA-NLP的剪刀式折叠桥梁展桥机构多目标优化设计[J]. 工程设计学报, 2020, 27(1): 67-75.
[8] 王哲, 陈勇, 曹展, 李光鑫, 左扣成. 纯电动汽车两挡变速器减振降噪研究[J]. 工程设计学报, 2019, 26(3): 280-286.
[9] 杨晨光, 邵宝东, 王丽凤, 杨洋. 基于热阻网络模型的硅基微槽热沉多目标优化设计[J]. 工程设计学报, 2018, 25(4): 426-433.
[10] 许健, 梅江平, 段晓斌, 罗振军, 陈落根. 一种工业机器人连续轨迹规划过渡算法[J]. 工程设计学报, 2016, 23(6): 537-543.
[11] 杨绍勇, 雷飞, 陈园. 基于铺层设计特征的碳纤维增强复合材料悬架控制臂结构优化[J]. 工程设计学报, 2016, 23(6): 600-605,619.
[12] 邬思敏, 孟文俊, 李淑君, 王尧, 徐成功. 双线圈旁置式新型磁流变制动器的设计与优化[J]. 工程设计学报, 2016, 23(5): 453-460.
[13] 毛 君,李 强,谢 苗,曹建南. 多目标优化软件开发及其应用[J]. 工程设计学报, 2015, 22(3): 262-268.
[14] 杨尹, 顾寄南, 郭林. 基于ADAMS的4RUPaR高速搬运并联机器人轨迹规划与运动学仿真[J]. 工程设计学报, 2013, 20(5): 375-382.
[15] 李丽娟, 黄振华, 刘锋. 用于结构优化设计的改进多目标群搜索算法[J]. 工程设计学报, 2013, 20(1): 11-17.