Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (4): 426-433    DOI: 10.3785/j.issn.1006-754X.2018.04.009
优化设计     
基于热阻网络模型的硅基微槽热沉多目标优化设计
杨晨光, 邵宝东, 王丽凤, 杨洋
昆明理工大学 建筑工程学院, 云南 昆明 650500
Multi-objective optimization design for silicon substrate microchannel heat sink based on thermal resistance network model
YANG Chen-guang, SHAO Bao-dong, WANG Li-feng, YANG Yang
College of Architectural and Civil Engineering, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(1120 KB)   HTML
摘要:

微槽热沉具有传热效率高、可靠性强的优点,可用于对微尺度高热流密度电子元件进行冷却。为满足其性能需求和控制成本,在对微槽热沉进行设计时需要对其传热能力和流动阻力同时进行优化。传统研究采用的热阻网络模型较为简单,不能很好地反映热阻和流动阻力对微槽道截面形状拓扑变化的响应,且其优化对象通常为既定截面的形状尺寸。为此提出一种基于离散化方法的单层硅基微槽热沉热阻网络模型,将热沉鳍片细分为厚度较小的微元,根据微元热阻对微元宽度的响应及微元热阻对整体热阻的贡献来描述微槽道的整体热阻。以微泵输出功率为优化边界条件,压降和热阻为优化目标,通过SQP(sequential quadratic programming,序列二次规划)方法对层流状态下四边形等截面硅基微槽热沉进行尺寸优化,利用CFD(computational fluid dynamics,计算流体动力学)对优化结果进行模拟和验证。结果表明,当鳍片高度较低时,鳍片截面形状为矩形,随着鳍高增加,截面形状有向三角形发展的趋势。在设计区间内,微槽道截面为梯形、鳍片截面为三角形时传热效率与压降相对占优。用边界点法和理想点法优化模型求得微槽道高度、鳍底宽、槽底宽、槽顶宽的优化结果分别为500,50,64.5,114.5 μm和500,50,50,100 μm。该方法能根据设计需求调整评价函数,同时计算结果具有重要工程意义,为微槽热沉设计人员提供参考。

关键词: 流固耦合多目标优化热阻网络模型微尺度冷却热沉多起点搜索    
Abstract:

Microchannel heat sink has the advantages of high heat transfer efficiency and reliability, and it is useful for cooling micro-scale high heat flux density electronic components. In order to meet the performance requirements and control cost, it is necessary to optimize the heat transfer capability and flow resistance of the microchannel heat sink at the same time. The thermal resistance network model used in the traditional research is relatively simple, which can not well reflect the response of thermal resistance and flow resistance to the topological changes of the microchannel cross-section shape, and the optimization object is usually the size of a given shape section. A single-layer silicon substrate microchannel heat sink thermal resistance network model was proposed by discretization method. The heat sink fins were separated into smaller ones. According to the response of microthermal resistance to the width of microdots, and the contribution of microthermal resistance to the overall thermal resistance, the overall thermal resistance of microchannel was described. Taking the output power of micro-pump as the optimized boundary condition and the pressure drop and thermal resistance as the optimization targets, the size of quadrilateral uniform cross-section silicon substrate heat sink was optimized by SQP (sequential quadratic programming) method. The optimization results were simulated and verified by CFD (computational fluid dynamics). The results showed that the shape of the cross section was rectangular when the height of fin was low, and it gradually turned into a triangle as the height of the fin increased. In the design range, when the microchannel section was trapezoidal, the fin section was triangular, the heat transfer efficiency and pressure drop were ralatively dominant. Under boundary point method and ideal point method, the optimization results of microchannel height, fin width, groove bottom width and groove top width were 500, 50, 64.5, 114.5 μm and 500, 50, 50, 100 μm, respectively. This method can adjust the evaluation function according to the design requirements, meanwhile, the calculation result has important engineering significance and provides reference for designers.

Key words: fluid-structure interaction    multi-objective optimization    thermal resistance network model    micro-scale cooling heat sink    multi-start search
收稿日期: 2017-11-20 出版日期: 2018-08-28
CLC:  TK124  
基金资助:

国家自然科学基金资助项目(11462010)

通讯作者: 邵宝东(1971-),男,黑龙江鸡西人,副教授,博士,从事微尺度传热研究,E-mail:shbd_1221@163.com,https://orcid.org/0000-0002-4344-7174     E-mail: shbd_1221@163.com
作者简介: 杨晨光(1992-),男,陕西宝鸡人,硕士生,从事热应力及热弹性力学、CAE/CAM研究,E-mail:1686585790@qq.com,https://orcid.org/0000-0002-5401-6871
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨晨光
邵宝东
王丽凤
杨洋

引用本文:

杨晨光, 邵宝东, 王丽凤, 杨洋. 基于热阻网络模型的硅基微槽热沉多目标优化设计[J]. 工程设计学报, 2018, 25(4): 426-433.

YANG Chen-guang, SHAO Bao-dong, WANG Li-feng, YANG Yang. Multi-objective optimization design for silicon substrate microchannel heat sink based on thermal resistance network model[J]. Chinese Journal of Engineering Design, 2018, 25(4): 426-433.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.04.009        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I4/426

[1] TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5):126-129.
[2] SHAH R K, LONDON A L. Laminar flow forced convection in ducts:a source book for compact heat exchanger analytical data[M]. Salt Lake City:Academic Press, 1978:431-455.
[3] 夏国栋,柴磊,齐景智.梯形硅基微通道热沉流体流动与传热特性研究[J].北京工业大学学报,2011,37(7):1079-1084. XIA Guo-dong, CHAI Lei, QI Jing-zhi. Study on flow and heat transfer characteristics of trapezoidal silicon-based microchannel heat sink fluid[J]. Journal of Beijing University of Technology, 2011, 37(7):1079-1084.
[4] WU H Y, CHENG P. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios[J]. International Journal of Heat & Mass Transfer, 2003, 46(14):2519-2525.
[5] QU W, MALA G M, LI D. Pressure-driven water flows in trapezoidal silicon microchannels[J]. International Journal of Heat & Mass Transfer, 2000, 43(3):353-364.
[6] SALIMPOUR M R, SHARIFHASAN M, SHIRANI E. Constructal optimization of the geometry of an array of micro-channels[J]. International Communications in Heat & Mass Transfer, 2011, 38(1):93-99.
[7] WANG Z H, WANG X D, YAN W M, et al. Multi-parameters optimization for microchannel heat sink using inverse problem method[J]. International Journal of Heat & Mass Transfer, 2011, 54(13):2811-2819.
[8] JEEVAN K, QUADIR G A, SEETHARAMU K N, et al. Optimization of thermal resistance of stacked micro-channel using genetic algorithms[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2005, 15(1):27-42.
[9] LIU D, GARINELLA S V. Analysis and optimization of the thermal performance of microchannel heat sinks[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2003, 15(1):7-26.
[10] 邵宝东,孙兆伟,王丽凤.热阻网络模型在微槽冷却热沉优化设计中的应用[J].吉林大学学报(工学版),2007,37(6):1263-1267. SHAO Bao-dong, SUN Zhao-wei, WANG Li-feng. Application of thermal resistance net model in optimization design of microchannel cooling heat sink[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(6):1263-1267.
[11] GUO Z Y. Characteristics of microscale fluid flow and heat transfer[C]//MEMS Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale, Buff, Oct.15-20, 2000.
[12] WANG B X, PENG X F. Experimental investigation on liquid forced-convection heat transfer through microchannels[J]. International Journal of Heat & Mass Transfer, 1994, 37(S1):73-82.
[13] 邵宝东,孙兆伟,王丽凤.微槽冷却热沉结构尺寸的优化设计[J].吉林大学学报(工学版),2007,37(2):313-318. SHAO Bao-dong, SUN Zhao-wei, WANG Li-feng. Optimization design of microchannel cooling heat sink[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(2):313-318.
[14] 魏琪.基于熵产最小的微槽冷却热沉优化设计[C]//中国数学力学物理学高新技术交叉研究学会第十二届学术年会论文集.[2017-11-10].http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=6765198. WEI Qi. Entropy production-based optimum design of microchannel heat sink[C]//Proceedings of Annual Conference of Chinese Institute of Research for Mathematics, Mechanics, Physics and High New Technology.[2017-11-10].http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=6765198.
[15] CHAI Lei, XIA Guo-dong, HUA Sheng-wang. Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls[J]. Applied Thermal Engineering, 2016, 92:32-41.
[16] 蔡奇彧,徐尚龙,吴益昊.三维硅基微通道散热器优化设计与数值分析[C]//电子机械与微波结构工艺学术会议论文集.[2017-11-10].http://xueshu.baidu.com/s?wd=paperuri:(bbd6e2b4630624c6bd83d0107489d6ff)&filter=sc_long_sign&sc_ks_para=q%3D三维硅基微通道散热器优化设计与数值分析&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_us=4679032634342608770. CAI Qi-yu, XU Shang-long, WU Yi-hao. Optimum design and numerical analysis of three-dimensional silicon-based microchannel radiator[C]//Proceedings of the Progress of Electromechanical and Microwave Structures.[2017-11-10].http://xueshu.baidu.com/s?wd=paperuri:(bbd6e2b4630624c6bd83d0107489d6ff)&filter=sc_long_sign&sc_ks_para=q%3D三维硅基微通道散热器优化设计与数值分析&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_us=4679032634342608770.
[17] HUANG Shan-bo, ZHAO Jin, GONG Liang, et al. Thermal performance and structure optimization for slotted microchannel heat sink[J]. Applied Thermal Engineering, 2017, 115:1266-1276.
[1] 况雨春,钟辉,钟良春. 类圆弧线型螺杆马达的设计与研究[J]. 工程设计学报, 2023, 30(5): 640-649.
[2] 窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.
[3] 刘江,肖正明,张龙隆,刘卫标. 考虑摆线轮磨损的RV减速器传动精度可靠性分析与参数优化[J]. 工程设计学报, 2022, 29(6): 739-747.
[4] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[5] 张云, 张瑞宾, 莫德赟, 刘晓刚. 电磁式发动机水冷系统流固耦合传热研究[J]. 工程设计学报, 2021, 28(3): 344-349.
[6] 苏芳, 罗茹楠, 刘艳明, 王晨升. 双轴联动进给系统多目标优化设计与研究[J]. 工程设计学报, 2020, 27(4): 456-462.
[7] 高启升, 朱兴华, 于延凯, 郑荣. UUV耐压结构多目标优化设计[J]. 工程设计学报, 2020, 27(2): 232-238.
[8] 王玉璞, 程文明, 杜润, 王书标, 杨行舟, 翟守才. 大型门式起重机风荷载响应仿真分析[J]. 工程设计学报, 2020, 27(2): 239-246.
[9] 张帅, 韩军, 涂群章, 杨小强, 杨旋. 基于GA-NLP的剪刀式折叠桥梁展桥机构多目标优化设计[J]. 工程设计学报, 2020, 27(1): 67-75.
[10] 王哲, 陈勇, 曹展, 李光鑫, 左扣成. 纯电动汽车两挡变速器减振降噪研究[J]. 工程设计学报, 2019, 26(3): 280-286.
[11] 钟强, 骆正山. 油气水三相段塞流引起的海洋立管耦合振动响应[J]. 工程设计学报, 2019, 26(1): 95-101.
[12] 邓小雷, 庞世杰, 李瑞琦, 周宜博, 王建臣, 傅建中. 基于昆虫翅脉仿生流道的数控机床主轴系统冷却结构热设计[J]. 工程设计学报, 2018, 25(5): 583-589.
[13] 徐玉梁, 刘为, 王振, 祖炳锋, 白杨, 刘丽娜. 发动机振动对排气歧管低周疲劳寿命影响研究[J]. 工程设计学报, 2018, 25(3): 330-337.
[14] 王萌, 徐晓婷, 李文强. 基于流固耦合的弹载电子设备瞬态热仿真分析方法[J]. 工程设计学报, 2018, 25(2): 194-199,208.
[15] 杨绍勇, 雷飞, 陈园. 基于铺层设计特征的碳纤维增强复合材料悬架控制臂结构优化[J]. 工程设计学报, 2016, 23(6): 600-605,619.