Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (5): 583-589    DOI: 10.3785/j.issn.1006-754X.2018.05.013
建模、仿真、分析与决策     
基于昆虫翅脉仿生流道的数控机床主轴系统冷却结构热设计
邓小雷1,2,3, 庞世杰1, 李瑞琦1, 周宜博1, 王建臣1,3, 傅建中2
1. 衢州学院 浙江省空气动力装备技术重点实验室, 浙江 衢州 324000;
2. 浙江大学 浙江省三维打印工艺与装备重点实验室, 浙江 杭州 310027;
3. 浙江永力达数控科技股份有限公司, 浙江 衢州 324000
Thermal design of cooling structure for CNC machine tool spindle system based on insect wing vein bionic channel
DENG Xiao-lei1,2,3, PANG Shi-jie1, LI Rui-qi1, ZHOU Yi-bo1, WANG Jian-chen1,3, FU Jian-zhong2
1. Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China;
2. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China;
3. Zhejiang Yonglida CNC Technology Co., Ltd., Quzhou 324000, China
 全文: PDF(4739 KB)   HTML
摘要:

主轴系统的热误差是影响数控机床加工精度的主要因素。根据自然界昆虫的翅脉结构,设计了一种基于鳞翅目昆虫翅脉仿生流道的新型主轴系统冷却结构。建立了昆虫翅脉仿生流道冷却结构模型,在数值传热学相关理论基础上,通过Fluent有限元软件对传统螺旋形流道和新型昆虫翅脉仿生流道冷却结构进行流固耦合仿真对比分析,结果显示后者比前者具有更好的散热效果和流动特性:在相同边界条件下,冷却液最大流速约为1.839 m/s,出入口压降为3 181 Pa,加热面最高温度降低了约17.8%、最低温度降低了约4.6%,且冷却结构的温度场分布更均匀。研究结果可为数控机床主轴系统冷却结构的热设计提供参考。

关键词: 仿生流道主轴系统冷却结构热设计流固耦合热态特性    
Abstract:

The thermal error of spindle system is the important influencing factor for the machining accuracy of CNC (computerized numerical control) machine tool. Inspired by wing vein structure of insects in natural word, a new type of cooling structure for spindle system was designed based on lepidoptera insect wing vein bionic channel. Based on the numerical heat transfer correlation theory, the cooling structure model of insect wing vein bionic channel was established, and then the simulation of spiral channel and insect wing vein bionic channel was analyzed comparatively through fluid-structure interaction of the finite element software Fluent. The result showed that the heat dissipation effects and flow characteristics of insect wing vein bionic channel were better than spiral channel's. Under the same boundary conditions, the maximum flow velocity of the coolant was about 1.839 m/s, the pressure drop between the inlet and outlet was 3 181 Pa, the maximum temperature of the heating surface was reduced about 17.8%, the minimum temperature of the heating surface was reduced about 4.6%, and the temperature field of the cooling structure was more even. Those results provide a reference for the thermal design of cooling structure for CNC machine tool spindle system.

Key words: bionic channel    spindle system    cooling structure    thermal design    fluid-structure interaction    thermal characteristic
收稿日期: 2018-03-26 出版日期: 2018-10-28
CLC:  TH161  
基金资助:

国家自然科学基金资助项目(51605253);浙江省自然科学基金资助项目(LY16E050011);衢州市科技计划资助项目(2016Y003);衢州学院校企合作教学团队项目(HZTD201701)

作者简介: 邓小雷(1981-),男,浙江衢州人,副教授,博士,从事数控技术与装备自动化技术等研究,E-mail:dxl@zju.edu.cn,https://orcid.org/0000-0002-2868-6310
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓小雷
庞世杰
李瑞琦
周宜博
王建臣
傅建中

引用本文:

邓小雷, 庞世杰, 李瑞琦, 周宜博, 王建臣, 傅建中. 基于昆虫翅脉仿生流道的数控机床主轴系统冷却结构热设计[J]. 工程设计学报, 2018, 25(5): 583-589.

DENG Xiao-lei, PANG Shi-jie, LI Rui-qi, ZHOU Yi-bo, WANG Jian-chen, FU Jian-zhong. Thermal design of cooling structure for CNC machine tool spindle system based on insect wing vein bionic channel[J]. Chinese Journal of Engineering Design, 2018, 25(5): 583-589.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.05.013        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I5/583

[1] MAYR J, JEDRZEJEWSKI J, UHLMANN E, et al. Thermal issues in machine tools[J]. CIRP Annals-Manufacturing Technology, 2012, 61(2):771-791.
[2] 邓小雷.数控机床主轴系统热态特性分析技术[M].杭州:浙江大学出版社,2017:1-64. DENG Xiao-lei. Analysis techniques of thermal characteristics for CNC machine tool spindle system[M]. Hangzhou:Zhejiang University Press, 2017:1-64.
[3] ABELE E, ALTINTAS Y, BRECHER C. Machine tool spindle units[J]. CIRP Annals-Manufacturing Technology, 2010, 59(2):781-802.
[4] 邓小雷,林欢,王建臣,等.机床主轴热设计研究综述[J].光学精密工程,2018,26(6):1415-1429. DENG Xiao-lei, LIN Huan, WANG Jian-chen, et al. Review on thermal design of machine tool spindles[J]. Optics and Precision Engineering, 2018, 26(6):1415-1429.
[5] CHIENC H, JANG J Y. 3-D numerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel[J]. Applied Thermal Engineering, 2008, 28(17):2327-2336.
[6] SLEITIA K. Heat transfer and pressure drop through rectangular helical ducts[J]. Journal of Renewable & Sustainable Energy, 2011, 3(4):681-197.
[7] 陈文华,贺青川,何强,等.高速电主轴水冷系统三维仿真与试验分析[J].中国机械工程,2010,21(5):550-555. CHEN Wen-hua, HE Qing-chuan, HE Qiang, et al. Simulation and experimental analysis for high-speed spindle with water-cooling system[J]. Journal of Mechanical Engineering, 2010, 21(5):550-555.
[8] 王可,刘继行,孙兴伟.螺旋水套与轴向水套水冷系统流固耦合对比分析[J].组合机床与自动化加工技术,2014(11):46-48. WANG Ke, LIU Ji-xing, SUN Xing-wei. Comparative fluid-solid coupling analysis of spiral channel and axial channel water cooling system[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2014(11):46-48.
[9] ZHANG C, CHEN Y, WU R, et al. Flow boiling in constructal tree-shaped minichannel network[J]. International Journal of Heat & Mass Transfer, 2011, 54(1):202-209.
[10] 徐尚龙,郭宗坤,秦杰,等.树形微通道热沉仿生建模及三维热流特性数值分析[J].中国机械工程,2014,25(9):1185-1188. XU Shang-long, GUO Zong-kun, QIN Jie, et al. Three dimensional numerical simulation of fluid flow and heat transfer in tree-shaped microchannels[J]. China Mechanical Engineering, 2014, 25(9):1185-1188.
[11] 徐尚龙,秦杰,胡广新.芯片冷却用微通道散热结构热流耦合场数值研究[J].中国机械工程,2011,22(23):2863-2866. XU Shang-long, QIN Jie, HU Guang-xin. Numerical study on heat-flow coupling field in microchannel heat sink structures for electronic chip cooling[J]. China Mechanical Engineering, 2011, 22(23):2863-2866.
[12] XIA C, FU J, LAI J, et al. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling[J]. Applied Thermal Engineering, 2015, 90:1032-1042.
[13] 夏晨晖.数控机床主轴温升特性快速辨识方法及新型温控结构的研究[D].杭州:浙江大学机械工程学院,2015:99-127. XIA Chen-hui. Research on fast identification method for machine tool spindle temperature rise characteristics and a novel cooling structure design[D]. Hangzhou:Zhejiang University, School of Mechanical Engineering, 2015:99-127.
[14] 傅建中,夏晨晖,贺永,等.一种基于分形流道的冷却套及电主轴:ZL201210334517.5[P].2015-07-29. FU Jian-zhong, XIA Chen-hui, HE Yong, et al. An electric spindle and its cooling sleeve based on a fractal flow channel:ZL201210334517.5[P]. 2015-07-29.
[15] 秦杰.仿生微流道散热器结构优化及流动散热特性研究[D].成都:电子科技大学机械电子与工程学院,2012:1-33. QIN Jie. Study on the structure optimization and flow heat dissipation characteristics of bionic microchannel[D]. Chengdu:University of Electronic Science and Technology, School of Mechanical and Electronic Engineering, 2012:1-33.
[16] 彭立印.柴油机缸内流体流动数值分析[D].成都:西南交通大学机械工程学院,2007:6-14. PENG Li-yin. Numerical analysis of airflow field in cylingder of disel engine[D]. Chengdu:Southwest Jiaotong University, School of Mechanical Engineering, 2007:6-14.
[17] 陶文铨.数值传热学[M].西安:西安交通大学出版社,2001:1-10. TAO Wen-quan. Numerical heat transfer[M]. Xi'an:Xi'an Jiaotong University Press, 2001:1-10.
[1] 况雨春,钟辉,钟良春. 类圆弧线型螺杆马达的设计与研究[J]. 工程设计学报, 2023, 30(5): 640-649.
[2] 张云, 张瑞宾, 莫德赟, 刘晓刚. 电磁式发动机水冷系统流固耦合传热研究[J]. 工程设计学报, 2021, 28(3): 344-349.
[3] 王玉璞, 程文明, 杜润, 王书标, 杨行舟, 翟守才. 大型门式起重机风荷载响应仿真分析[J]. 工程设计学报, 2020, 27(2): 239-246.
[4] 钟强, 骆正山. 油气水三相段塞流引起的海洋立管耦合振动响应[J]. 工程设计学报, 2019, 26(1): 95-101.
[5] 杨晨光, 邵宝东, 王丽凤, 杨洋. 基于热阻网络模型的硅基微槽热沉多目标优化设计[J]. 工程设计学报, 2018, 25(4): 426-433.
[6] 徐玉梁, 刘为, 王振, 祖炳锋, 白杨, 刘丽娜. 发动机振动对排气歧管低周疲劳寿命影响研究[J]. 工程设计学报, 2018, 25(3): 330-337.
[7] 王萌, 徐晓婷, 李文强. 基于流固耦合的弹载电子设备瞬态热仿真分析方法[J]. 工程设计学报, 2018, 25(2): 194-199,208.
[8] 卢燕, 王珏, 凌明祥, 杜平安. 精密离心机热变形多物理场耦合数值计算[J]. 工程设计学报, 2016, 23(1): 49-53,73.
[9] 张路路,张瑞军,王晓伟,王囡囡. 模糊支撑半径变量贝叶斯网络多态系统故障概率分析[J]. 工程设计学报, 2014, 21(5): 405-411.
[10] 郑传祥,李蓉,王亮,魏宗新,刘远峰. 小型制冷压缩机吸气阀的流固耦合分析和优化研究[J]. 工程设计学报, 2014, 21(1): 68-74.
[11] 陈宁, 王兵, 陈兆兵, 王恒坤, 庄昕宇, 韩旭东. 红外成像系统温度适应性设计[J]. 工程设计学报, 2011, 18(6): 453-456.
[12] 吴昌聚, 沈润杰, 何闻, 贾叔仕. 振动台在无限流体域中台面附加质量研究[J]. 工程设计学报, 2002, 9(5): 275-278.