Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (3): 271-280    DOI: 10.3785/j.issn.1006-754X.2023.00.040
机械设计理论与方法     
基于改进果蝇优化算法的塔机自适应滑模控制研究
何育民(),韩莹,周晶
西安建筑科技大学 机电工程学院,陕西 西安 710055
Research on adaptive sliding mode control of tower crane based on improved fruit fly optimization algorithm
Yumin HE(),Ying HAN,Jing ZHOU
School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
 全文: PDF(3089 KB)   HTML
摘要:

针对部分工况下塔机负载摆角直接测量困难、系统滑模控制器抖振明显以及控制器参数调节复杂等问题,提出了一种基于改进果蝇优化算法的塔机自适应滑模控制方法。首先,根据拉格朗日方程,得到了塔机单摆系统的动力学模型。然后,设计了线性扩张状态观测器,用于观测塔机负载摆动状态,并将观测结果反馈到自适应滑模控制器中;在构造滑模面时,采用双曲正切函数代替常用的符号函数以增加其连续性,从而减小抖振。最后,改进了果蝇优化算法的寻优策略及搜索半径,并对自适应滑模控制器的参数进行了优化。结果表明,所设计的线性扩张状态观测器跟踪观测塔机负载摆角的收敛速度较快且跟踪误差小于1.3%;经改进果蝇优化算法优化后的自适应滑模控制器不仅对负载摆动有较好的抑制作用,而且具有较强的抗干扰性和鲁棒性。所提出的控制方法可在实现精确定位的同时有效避免塔机负载摆动带来的安全隐患,保障工人的安全和工程的顺利开展。

关键词: 塔机负载摆动扩张状态观测器果蝇优化算法自适应滑模控制    
Abstract:

In view of the direct measurement difficulties of load swing angle of tower crane under some working conditions, obvious chattering of the system sliding mode controller and complicated adjustment of controller parameters, an adaptive sliding mode control method for tower crane based on improved fruit fly optimization algorithm was proposed. Firstly, based on the Lagrange equation, the dynamics model of the tower crane single pendulum system was obtained. Then, a linear extended state observer was designed to observe the load swing state of tower crane, and the observation results were fed back to the adaptive sliding mode controller. When constructing sliding mode surface, the hyperbolic tangent function was used instead of the common symbol function to increase its continuity and reduce chattering. Finally, the optimization strategy and search radius of the fruit fly optimization algorithm were improved, and the parameters of the adaptive sliding mode controller were optimized. The results showed that the designed linear extended state observer could track and observe the load swing angle of the tower crane with fast convergence speed and tracking error less than 1.3%. The adaptive sliding mode controller optimized by the improved fruit fly optimization algorithm not only had a good suppression effect on the load swing of tower crane, but also had strong anti-interference and robustness. The proposed control method can effectively avoid safety hazards caused by tower crane load swing while achieving precise positioning, ensuring the safety of workers and the smooth progress of the project.

Key words: tower crane    load swing    extended state observer    fruit fly optimization algorithm    adaptive sliding mode control
收稿日期: 2022-11-25 出版日期: 2023-07-06
CLC:  TH 113  
基金资助: 国家自然科学基金资助项目(519705449);陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ032)
作者简介: 何育民(1968—),男,陕西西安人,副教授,博士,从事塔机平稳运行、机电一体化研究,E-mail: he_yumin@163.com,https://orcid.org/0000-0002-6386-1647
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何育民
韩莹
周晶

引用本文:

何育民,韩莹,周晶. 基于改进果蝇优化算法的塔机自适应滑模控制研究[J]. 工程设计学报, 2023, 30(3): 271-280.

Yumin HE,Ying HAN,Jing ZHOU. Research on adaptive sliding mode control of tower crane based on improved fruit fly optimization algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(3): 271-280.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.040        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I3/271

图1  塔机单摆系统简化模型
图2  塔机防摆控制系统总体结构框图
图3  FOA寻优原理
图4  第1组线性扩张状态观测器跟踪观测仿真结果
图5  第2组线性扩张状态观测器跟踪观测仿真结果
图6  优化前后自适应滑模控制器控制效果的仿真结果对比
性能参数优化前优化后
FOAIMFOA
小车到达位置/m1.101.091.08
小车到达位置用时/s7.366.475.50
负载最大摆角/(°)1.501.000.82
负载残余摆角/(°)0.080.050.02
残余摆角收敛用时/s1.120.900.59
表1  优化前后自适应滑模控制器的控制性能对比
图7  优化前后自适应滑模控制器控制效果的实验结果对比
图8  不同工况下自适应滑模控制器的控制效果对比
图9  干扰条件下自适应滑模控制器的控制效果
1 王祥,陈志梅,邵雪卷,等.基于滑模自抗扰控制的变绳长塔机防摆控制[J].机电工程,2023,40(3):444-451. doi:10.3969/j.issn.1001-4551.2023.03.017
WANG X, CHEN Z M, SHAO X J, et al. Anti-sway control for changing rope length tower crane based on sliding mode active disturbance rejection control[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(3): 444-451.
doi: 10.3969/j.issn.1001-4551.2023.03.017
2 陆峰,张义星,石怀涛,等.基于能量法的多自由度欠驱动塔机防摆控制[J].控制工程,2023,30(4):605-612.
LU F, ZHANG Y X, SHI H T, et al. Anti-swing control of underactuated tower crane with multiple degrees of freedom based on energy method [J]. Control Engineering of China, 2023, 30(4): 605-612.
3 ZHANG M H, ZHANG Y F, JI B, et al. Adaptive sway reduction for tower crane systems with varying cable lengths[J]. Automation in Construction, 2020, 119: 103342.
4 LIU X N, CAI T. Variable coefficient active disturbance rejection control for crane system[C]// Proceedings of the 38th Chinese Control Conference. Guangzhou, Jul. 27-30, 2019.
5 JIANG W G, DING L Y, ZHOU C. Digital twin: stability analysis for tower crane hoisting safety with a scale model[J]. Automation in Construction, 2022, 138: 104257.
6 LU B, FANG Y C, SUN N, et al. Anti swing control of offshore boom cranes with ship roll disturbances[J]. IEEE Transactions on Control Systems Technology, 2018, 26(2): 740-747.
7 QIAN D W, DING H, LEE S G, et al. Suppression of chaotic behaviors in a complex biological system by disturbance observer-based derivative-integral terminal sliding mode[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(1): 126-135.
8 ZHAO X S, HUANG J. Distributed-mass payload dynamics and control of dual cranes undergoing planar motions[J]. Mechanical Systems and Signal Processing, 2019, 126: 636-648.
9 SUN N, LIANG D K, WU Y M, et al. Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints[J]. IEEE Transactions on Industrial Informatics, 2020, 16(2): 969-979.
10 LIU Z Q, SUN N, WU Y M, et al. Nonlinear sliding mode tracking control of underactuated tower cranes[J]. International Journal of Control, Automation and Systems, 2021, 19(2): 1065-1077.
11 WU T S, KARKOUB M, YU W S, et al. Anti-sway tracking control of tower cranes with delayed uncertainty using a robust adaptive fuzzy control[J]. Fuzzy Sets and Systems, 2016, 290: 118-137.
12 SUN N, WU Y M, CHEN H, et al. Anti-swing cargo transportation of underactuated tower crane systems by a nonlinear controller embedded with an integral term[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1387-1398.
13 肖仁,吴定会.机械臂固定时间观测器和自适应滑模控制方法的设计[J].机械科学与技术,2020,39(5):714-720. doi:10.13433/j.cnki.1003-8728.20190212
XIAO R, WU D H. Design of fixed time observer and adaptive synovial control method for manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 714-720.
doi: 10.13433/j.cnki.1003-8728.20190212
14 XIAO B, YIN S. Exponential tracking control of robotic manipulators with uncertain dynamics and kinematics[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 689-698.
15 赵兴强,刘振,高存臣.机械臂自适应神经网络滑模控制器设计[J/OL].控制工程:1-6[2022-11-15]..
ZHAO X Q, LIU Z, GAO C C. Adaptive neural network-based sliding mode controller design for manipulator systems[J/OL]. Control Engineering of China:1-6[2022-11-15]. .
16 DUMA R, TRUSCA M, DOBRA P. Tuning and implementation of PID controllers using rapid control prototyping[J]. Control Engineering and Applied Informatics, 2011, 13(4): 64-73.
17 ZHOU Y Q, MIAO F H, LUO Q F. Symbiotic organisms search algorithm for optimal evolutionary controller tuning of fractional fuzzy controllers[J]. Applied Soft Computing, 2019, 77: 497-508.
18 VERMA B, PADHY P. Robust fine tuning of optimal PID controller with guaranteed robustness[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4911-4920.
19 CHEN H P, BOWELS S, ZHANG B, et al. Controller parameter optimization for complex industrial system with uncertainties[J]. Measurement & Control, 2019, 52(7/8): 888-895.
20 EL-GENDY E M, SAAFAN M M, ELKSAS M S, et al. Applying hybrid genetic: PSO technique for tuning an adaptive PID controller used in a chemical process[J]. Soft Computing, 2020, 24(5): 3455-3474.
21 凤丽洲,王友卫,韩琳琳,等.双重驱动的果蝇优化算法及其在PID控制器中的应用[J].控制与决策,2021,36(9):2225-2233. doi:10.13195/j.kzyjc.2020.0046
FENG L Z, WANG Y W, HAN L L, et al. Double drive fruit fly optimization algorithm and its application in PID controller[J]. Control and Decision, 2021, 36(9): 2225-2233.
doi: 10.13195/j.kzyjc.2020.0046
22 赵晓军,刘成忠,胡小兵.基于果蝇优化算法的PID控制器设计与应用[J].中南大学学报(自然科学版),2016,47(11):3729-3734. doi:10.11817/j.issn.1672-7207.2016.11.016
ZHAO X J, LIU C Z, HU X B. Design and application of PID controller based on fruit fly optimization algorithm[J]. Journal of Central South University (Science and Technology), 2016, 47(11): 3729-3734.
doi: 10.11817/j.issn.1672-7207.2016.11.016
23 ZHANG M H, ZHANG Y F, CHENG X G. An enhanced coupling PD with sliding mode control method for underactuated double-pendulum overhead crane systems[J]. International Journal of Control, Automation and Systems, 2019, 17(6): 1579-1588.
24 OUYANG H M, TIAN Z, YU L L, et al. Motion planning approach for payload swing reduction in tower cranes with double-pendulum effect[J]. Journal of the Franklin Institute, 2020, 357(13): 8299-8320.
25 周欢,王坚强,王丹丹.基于Hurwicz的概率不确定的灰色随机多准则决策方法[J].控制与决策,2015,30(3):556-560. doi:10.13195/j.kzyjc.2014.0060
ZHOU H, WANG J Q, WANG D D. Grey stochastic multi-criteria decision-making approach based on Hurwicz with uncertain probability[J]. Control and Decision, 2015, 30(3): 556-560.
doi: 10.13195/j.kzyjc.2014.0060
[1] 胡坤, 蒋庆楠, 季晨光, 杨健, 李飞. 基于改进ESO的磁悬浮系统模型参考滑模控制[J]. 工程设计学报, 2022, 29(1): 82-91.
[2] 韩丁, 丁俊. 基于TLESO/HLESO/RLESO的PMSM调速系统研究[J]. 工程设计学报, 2018, 25(1): 94-102.
[3] 黄 磊,罗振军,许文婧,王 宪,王超越. 一种爬塔机器人的设计、仿真与控制[J]. 工程设计学报, 2015, 22(5): 476-481.
[4] 贾昭, 马松龄, 路继军, 王亮亮. 基于ZigBee的塔机吊钩定位算法[J]. 工程设计学报, 2013, 20(4): 348-352.