Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (4): 467-475    DOI: 10.3785/j.issn.1006-754X.2023.00.056
机械仿生设计     
电流体泵驱动的柔性弯曲执行器的设计及分析
张涛1(),王开松1(),唐威2(),秦可成2,刘阳1,石雨豪3,邹俊2
1.安徽理工大学 机械工程学院,安徽 淮南 232001
2.浙江大学 流体动力基础件与机电系统全国重点实验室,浙江 杭州 310058
3.燕山大学 机械工程学院,河北 秦皇岛 066000
Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps
Tao ZHANG1(),Kaisong WANG1(),Wei TANG2(),Kecheng QIN2,Yang LIU1,Yuhao SHI3,Jun ZOU2
1.School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
2.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
3.School of Mechanical Engineering, Yanshan University, Qinhuangdao 066000, China
 全文: PDF(3314 KB)   HTML
摘要:

针对目前柔性执行器需要外置的刚体泵和阀的问题,基于人手指弯曲抓握的运动特点,设计了一款由内嵌电流体泵驱动的柔性弯曲执行器。设计了电流体泵,通过实验分析了电流体泵的极板间距和电极孔直径对电流体泵输出流量和压强的影响,确定了电流体泵针电极、孔电极等部件的尺寸,研制了电流体泵样机。将多个电流体泵串联及并联,分别得出了输入电压与输出流量、输出压强的关系,确定了以2个电流体泵串联的方式来驱动软体执行器;建立了柔性执行器的力学模型,对柔性执行器进行了弯曲仿真和实验,得到了驱动压强与柔性执行器弯曲角度之间的关系,证明了柔性执行器具有良好的弯曲性能。弯曲角度的实验值、仿真值、理论值较一致,理论模型和仿真模型可以较为准确地描述柔性弯曲执行器的弯曲变形。电流体泵与柔性执行器高度集成,使电流体泵可以直接驱动柔性执行器弯曲变形,实现了柔性弯曲执行器的可携带性。

关键词: 电流体泵柔性弯曲执行器电极对有限元分析    
Abstract:

In response to solve the current issue of requiring external rigid body pump and valve for flexible actuator, a flexible bending actuator driven by an embedded electrohydrodynamic pump was designed based on the motion characteristics of human finger bending and grasping. A electrohydrodynamic pump was designed, and the influence of electrode plate spacing and electrode hole diameter on the output flow and pressure of the electrohydrodynamic pump were analyzed through experiments. The dimensions of the needle electrode, hole electrode and other components of electrohydrodynamic pump were determined, and a prototype of the electrohydrodynamic pump was developed. Multiple electrohydrodynamic pumps were connected in series and parallel, and the relationships between input voltage and output pressure, output flow were obtained. Two electrohydrodynamic pumps in series were determined to drive the flexible actuator; a mechanical model of the flexible actuator was established, and bending simulation and experiments were conducted on the flexible actuator. The relationship between the driving pressure and the bending angle of the flexible actuator was obtained, proving the good bending performance of the flexible actuator. The experimental, simulation, and theoretical values of the bending angle were relatively consistent, and the theoretical and simulation models could accurately describe the bending deformation of the flexible bending actuator. The high integration of the electrohydrodynamic pump and the flexible actuator allows the electrohydrodynamic pump to directly drive the bending deformation of the flexible actuator, achieving the portability of the flexible bending actuator.

Key words: electrohydrodynamic pump    flexible bending actuator    electrode pair    finite element analysis
收稿日期: 2023-05-23 出版日期: 2023-09-04
CLC:  TH 3  
基金资助: 国家自然科学基金资助项目(52261135542);博士后创新人才支持计划项目(BX20220267)
通讯作者: 王开松,唐威     E-mail: 2242770074@qq.com;6668978wks@163.com;weitang@zju.edu.cn
作者简介: 张 涛(1994—),男,河南信阳人,硕士生,从事柔性机器人设计及应用研究,E-mail: 2242770074@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张涛
王开松
唐威
秦可成
刘阳
石雨豪
邹俊

引用本文:

张涛,王开松,唐威,秦可成,刘阳,石雨豪,邹俊. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.

Tao ZHANG,Kaisong WANG,Wei TANG,Kecheng QIN,Yang LIU,Yuhao SHI,Jun ZOU. Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps[J]. Chinese Journal of Engineering Design, 2023, 30(4): 467-475.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.056        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/467

图1  柔性弯曲执行器结构
部件质量
柔性执行器16.2
电流体泵外壳9.9
孔极板2.4
针极板1.2
连接器5.0
储液缸7.0
表1  柔性弯曲执行器各部件的质量 (g)
图2  柔性执行器结构
图3  电流体泵结构及样机
图4  电流体泵工作原理示意
图5  针孔电极参数对电流体泵性能的影响
图6  多个电流体泵串联对电流体泵输出压强的影响
图7  多个电流体泵并联对电流体泵输出流量的影响
参数量值
外壳尺寸(长×宽×高)29 mm×30 mm×18.5 mm
正极板尺寸(长×宽×高)26 mm×14.6 mm×1 mm
负极板尺寸(长×宽×高)26 mm×14.6 mm×1 mm
极板间距1 mm
电极孔直径2.0 mm
铜针直径0.3 mm
表2  电流体泵各部件尺寸
图8  柔性执行器的结构尺寸
图9  变形后柔性执行器单节腔室示意
图10  柔性执行器弯曲仿真结果
图11  柔性执行器制备过程
图12  柔性弯曲执行器装配过程
图13  柔性执行器的弯曲状态
图14  电流体泵输出压强与柔性执行器弯曲角度的关系曲线
1 CIANCHETTI M, CALISTI M, MARGHERI L, et al. Bioinspired locomotion and grasping in water: The soft eight-arm OCTOPUS robot[J]. Bioinspiration and Biomimetics, 2015, 10(3): 035003. doi:10.1088/1748-3190/10/3/035003
doi: 10.1088/1748-3190/10/3/035003
2 DELLA S C, KATZSCHMANN R K, BICCHI A, et al. Hierarchical control of soft manipulators towards unstructured interactions[J]. The International Journal of Robotics Research, 2021, 40(1): 411-434. doi:10.1177/0278364920979367 .
doi: 10.1177/0278364920979367
3 TOLLEY M T, SHEPHERD R F, MOSADEGH B, et al. A resilient, untethered soft robot[J]. Soft Robotics, 2014, 1(3): 213-223. doi:10.1089/soro.2014.0008 .
doi: 10.1089/soro.2014.0008
4 徐丰羽,孟凡昌,范保杰,等.软体机器人驱动、建模与应用研究综述[J].南京邮电大学学报(自然科学版),2019,39(3):64-75. doi:10.14132/j.cnki.1673-5439.2019.03.010
XU F Y, MENG F C, FAN B J, et al. Review of driving methods, modeling and application in soft robots[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2019, 39(3): 64-75.
doi: 10.14132/j.cnki.1673-5439.2019.03.010
5 李三平,孙腾佳,袁龙强,等.气动软体采摘机械手设计及实验研究[J].工程设计学报,2022,29(6):684-694. doi:10.3785/j.issn.1006-754X.2022.00.085
LI S P, SUN T J, YUAN L Q, et al. Design and experimental research of pneumatic soft picking manipulator[J]. Chinese Journal of Engineering Design,2022, 29(6): 684-694.
doi: 10.3785/j.issn.1006-754X.2022.00.085
6 鲍官军,张亚琪,许宗贵,等.软体机器人气压驱动结构研究综述[J].高技术通讯,2019,29(5):467-479. doi:10.3772/j.issn.1002-0470.2019.05.008
BAO G J, ZHANG Y Q, XU Z G. Review on pneumatic-driven structure for soft robot[J]. Chinese High Technology Letters, 2019, 29(5): 467-479.
doi: 10.3772/j.issn.1002-0470.2019.05.008
7 RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521: 467-475. doi:10.1038/nature14543
doi: 10.1038/nature14543
8 BRIAN B K, HYUNGMIN C, HAEMIN L, et al. Exo-glove poly Ⅱ: A polymer-based soft wearable robot for the hand with a tendon-driven actuation system[J]. Soft Robotics, 2019, 6(2): 214-227. doi:10.1089/soro.2018.0006
doi: 10.1089/soro.2018.0006
9 LI S, WANG K W. Fluidic origami: A plant-inspired adaptive structure with shape morphing and stiffness tuning[J]. Smart Materials and Structures, 2015, 24(10): 105031. doi:10.1088/0964-1726/24/10/105031
doi: 10.1088/0964-1726/24/10/105031
10 SUTTER T M, DICKERSON M B, CREASY T S, et al. Rubber muscle actuation with pressurized CO2 from enzyme-catalyzed urea hydrolysis[J]. Smart Materials and Structures, 2013, 22(9): 094022. doi:10.1088/0964-1726/22/9/094022
doi: 10.1088/0964-1726/22/9/094022
11 JI Z Y, YAN C Y, YU B, et al. Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator[J]. Advanced Materials Interfaces, 2017, 4(22): 1700629. doi:10.1002/admi.201700629
doi: 10.1002/admi.201700629
12 YUAN J K, NERI W, ZAKRI C, et al. Shape memory nanocomposite fibers for untethered high-energy microengines[J]. Science, 2019, 365: 155-158. doi:10.1126/science.aaw3722
doi: 10.1126/science.aaw3722
13 JUN Y N, SHUICHI W, TOSHIYUKI S, et al. Design of a variable-stiffness robotic hand using pneumatic soft rubber actuators[J]. Smart Materials and Structures, 2011, 20(10): 105015. doi:10.1088/0964-1726/20/10/105015
doi: 10.1088/0964-1726/20/10/105015
14 XIE Z, DOMEL A G, AN N, et al. Octopus arm-inspired tapered soft actuators with suckers for improved grasping.[J]. Soft Robotics, 2020, 7(5): 639-648. doi:10.1089/soro.2019.0082
doi: 10.1089/soro.2019.0082
15 FARIS O, MUTHUSAMY R, RENDA F, et al. Proprioception and exteroception of a soft robotic finger using neuromorphic vision-based sensing[J]. Soft Robot, 2023: 467-481. doi:10.1089/soro.2022.0030
doi: 10.1089/soro.2022.0030
16 YANG Y, WEI Y, LI Y T, et al. Novel design and three-dimensional printing of variable stiffness robotic grippers[J]. Journal of Mechanisms and Robotics, 2016, 8(6): 061010. doi:10.1115/1.4033728
doi: 10.1115/1.4033728
17 KANO I. Development of an EHD micropump to generate oscillating flow at low frequencies (effect of waveform on the EHD pumping)[J]. IEEE Transactions on Industry Applications, 2012, 48(3): 864-871. doi:10.1109/TIA.2012.2191249
doi: 10.1109/TIA.2012.2191249
18 CACUCCIOLO V, SHINTAKE J, KUWAJIMA Y, et al. Stretchable pumps for soft machines[J]. Nature, 2019, 572: 516-519. doi:10.1038/s41586-019-1479-6
doi: 10.1038/s41586-019-1479-6
19 SMITH M, CACUCCIOLO V, SHEA H. Fiber pumps for wearable fluidic systems[J]. Science, 2023, 379: 1327-1332. doi:10.1126/science.ade8654
doi: 10.1126/science.ade8654
20 TANG W, ZHANG C, ZHONG Y D, et al. Customizing a self-healing soft pump for robot[J]. Nature Communications, 2021, 12(1): 2247. doi:10.1038/s41467-021-22391-x
doi: 10.1038/s41467-021-22391-x
21 李斯盟,李清泉,王宝华,等.针-环与针-网电极液体EHD泵静态驱动力的实验研究[J].高电压技术,2015,41(6): 2108-2115. doi:10.13336/j.1003-6520.hve.2015.06.046
LI S M, LI Q Q, WANG B H. Experimental study on the static thrust of liquid EHD pump with single needle-ring and needle-mesh electrodes[J]. High Voltage Engineering, 2015, 41(6): 2108-2115.
doi: 10.13336/j.1003-6520.hve.2015.06.046
22 HUANG W, XIAO J L, XU Z P. A variable structure pneumatic soft robot[J]. Scientific Reports, 2020, 10(1): 18778. doi:10.1038/s41598-020-75346-5
doi: 10.1038/s41598-020-75346-5
23 谢业平,李红军.常用硅胶材料软体气动夹爪夹持性能的仿真研究[J].浙江理工大学学报(自然科学版), 2021, 45(3):328-334. doi:10.3969/j.issn.1673-3851(n). 2021.03.006
XIE Y P, LI H J. The simulation of the clamping performance of soft pneumatic grippers made of common silicone materials[J]. Journal of Zhejiang Institute of Science and Technology, 2021, 45(3): 328-334.
doi: 10.3969/j.issn.1673-3851(n). 2021.03.006
[1] 谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
[2] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[3] 李三平,孙腾佳,袁龙强,吴立国. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报, 2022, 29(6): 684-694.
[4] 赵致勃,顾大强,李立新,张靖. 基于接触应力优化的摆线轮修形设计[J]. 工程设计学报, 2022, 29(6): 713-719.
[5] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[6] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[7] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[8] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[9] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.
[10] 黄伟, 徐建, 陆新征, 胡明祎, 廖文杰. 动力装备和建筑楼盖的动力吸振研究[J]. 工程设计学报, 2021, 28(1): 25-32.
[11] 周超, 秦瑞江, 芮晓明. 风载荷作用下V形绝缘子串的力学特性分析[J]. 工程设计学报, 2021, 28(1): 95-104.
[12] 周超, 王阳, 芮晓明. 500 kV输电线路跳线风偏有限元分析与试验研究[J]. 工程设计学报, 2020, 27(6): 713-719.
[13] 李成兵, 雷鹏. 5 000 m3立式拱顶储罐应力分析与弱顶性能评价[J]. 工程设计学报, 2020, 27(2): 182-190.
[14] 刘召, 由宏新, 孙亮, 杨玉玲, 刘华清. 大型球罐悬吊式液压传动回转检测平台设计[J]. 工程设计学报, 2019, 26(3): 267-273.
[15] 宋建虎. 某高轨星载数传天线的振动分析[J]. 工程设计学报, 2019, 26(3): 274-279.