Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (3): 267-273    DOI: 10.3785/j.issn.1006-754X.2019.03.004
创新设计     
大型球罐悬吊式液压传动回转检测平台设计
刘召1, 由宏新1, 孙亮2,3, 杨玉玲1, 刘华清4
1.大连理工大学 化工机械与安全学院, 辽宁 大连116024
2.中国特种设备检测研究院, 北京 100029
3.国家市场监督管理总局 特种设备安全与节能重点实验室, 北京 100029
4.大连理工大学 船舶工程学院, 辽宁 大连116024
Design of suspended hydraulic transmission rotary detection platform for large spherical tank
LIU Zhao1, YOU Hong-xin1, SUN Liang2,3, YANG Yu-ling1, LIU Hua-qing4
1.School of Chemical Machinery and Safety Engineering, Dalian University of Technology, Dalian 116024, China
2.China Special Equipment Inspection and Research Institute, Beijing 100029,China
3.Key Laboratory of Special Equipment Safety and Energy-saving, State Administration for Market Regulation (SAMR), Beijing 100029, China
4.School of Naval Architecture, Dalian University of Technology, Dalian 116024, China
 全文: PDF(1170 KB)   HTML
摘要:

球罐作为重要的压力容器,在工业生产中有着广泛的应用,但其焊缝附近极易产生结构性损伤,严重危害球罐的安全使用,因此需对球罐进行定期检测。针对目前球罐的检测需搭设脚手架,存在检测周期长、检测环境恶劣、劳动强度大等问题,设计开发了一种悬吊式液压传动回转检测平台,它主要由竖直液压伸缩臂、摆动液压伸缩臂、液压回转装置、回转驱动装置、液压升降机构、上连接架及载人框等构成。该检测平台安装方便、快捷,可对球罐进行无死角检测。通过对检测平台安全性能进行理论分析,得出了检测平台各部分的许用应力值;通过受力分析得出了两液压伸缩臂在其夹角为5°~150°时的受力规律;采用ANSYS Workbench软件对检测平台进行了有限元分析,对检测平台的安全性能进行了校核。结果表明设计的检测平台安全且具有加工与装配的可行性。该检测平台的使用可有效减少球罐内部检测的工作量,改善检测环境,缩短检测周期,提高检测效率,可为企业和检测机构节约大量成本。

关键词: 球罐检测载人检测平台液压有限元分析    
Abstract:

As an important pressure vessel, spherical tank is widely used in industrial production. However, its weld seam vicinity is prone to produce structural damage, which seriously jeopardizes the safe use of spherical tanks. Therefore, it needs to be inspected regularly. Aiming at the problems of scaffolding in spherical tank inspection, such as long inspection period, poor detection environment and high labor intensity, a suspended hydraulic transmission rotary detection platform was designed and developed. The platform was mainly made up of the vertical hydraulic telescopic arm, the swing hydraulic telescopic arm, the hydraulic rotary device, the slewing drive device, the hydraulic lifting mechanism, the upper connecting frame, the manned frame and so on. The platform was convenient and quick to install and could perform no dead angle detection for the whole tank. Through the theoretical analysis of the detection platform, the allowable stress values of each part of the detection platform were obtained. Through force analysis, the force law of two hydraulic telescopic arms with an angle of 5°-150° was obtained. The finite element analysis for detection platform was carried out by using ANSYS Workbench, and the safety performance of the detection platform was checked. The results showed that the detection platform was safe and feasible for processing and assembling. The use of the detection platform can effectively reduce the workload of internal detection, improve the detection environment, shorten the detection period, improve the detection efficiency and save a lot of cost for enterprises and inspection agencies.

Key words: spherical tank inspection    manned detection platform    hydraulic    finite element analysis
收稿日期: 2019-01-08 出版日期: 2019-06-28
CLC:  TH 122  
基金资助:

国家重点研发计划资助项目(2017YFC0805600)

通讯作者: 由宏新(1963—),男,副教授,博士,从事压力容器特种检验技术等研究, E-mail:youhx@dlut.edu.cn,https://orcid.org/0000-0003-3835-8393     E-mail: youhx@dlut.edu.cn
作者简介: 刘召(1993—),男,河北保定人,硕士生,从事压力容器安全和在线监控研究,E-mail:Joe_Liu@mail.dlut.edu.cn,https://orcid.org/0000-0001-7163-069X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘召
由宏新
孙亮
杨玉玲
刘华清

引用本文:

刘召, 由宏新, 孙亮, 杨玉玲, 刘华清. 大型球罐悬吊式液压传动回转检测平台设计[J]. 工程设计学报, 2019, 26(3): 267-273.

LIU Zhao, YOU Hong-xin, SUN Liang, YANG Yu-ling, LIU Hua-qing. Design of suspended hydraulic transmission rotary detection platform for large spherical tank. Chinese Journal of Engineering Design, 2019, 26(3): 267-273.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.03.004        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I3/267

1 XIELi-wan. Quality control of full inspection for spherical tank[J]. Petroleum and Chemical Equipment, 2018, 21(6): 75-78.
2 CHENGB, HUANGJ X, SHANY. The economic design and analysis for mixed model spherical tank shell angle partition[J]. Procedia Engineering, 2015, 130: 41-47.doi:10.1016/j.proeng.2015.12.173
3 CHANGHu, LIUGuo-dong, WANGQing-dong, et al. Construction of 1000 m3 ethylene spherical tank[J]. Electric Wddmg Machine, 2014, 44(3): 130-133.
4 GUTMANE M, BERGMANR M, LEVITSKYS P. Influence of internal uniform corrosion on stability loss of a thin-walled spherical shell subjected to external pressure[J]. Corrosion Science, 2016, 111: 212-215. doi:10.1016/j.corsci.2016.04.018
5 RADOVANP, MIROSLAVZ, MARKOT, et al. Analytical, numerical and experimental stress assessment of the spherical tank with large volume[J]. Tehnicki Vjesnik-Technical Gazette, 2015, 22(5): 1135-1140.
6 LIUJie, LIFei, JIAYin-cui, et al. Case analysis of overdue service liquefied balloon tank inspection[J]. China Equipment Engineering, 2018(21): 98-100.
7 LUOT Y, WUC, DUANL X. Fishbone diagram and risk matrix analysis method and its application in safety assessment of natural gas spherical tank[J]. Journal of Cleaner Production, 2018, 174: 296-304. doi:10.1016/j.jclepro.2017.10.334
8 SANGH S, DAE E K. A study on forces generated on spherical type LNG tank with central cylindrical part under various static loading[J]. International Journal of Naval Architecture, 2016, 8(6): 530-536. doi: 10.1016/j.ijnaoe.2016.07.001
9 LIUJia-hong. Discussion on processing method of internal inspection of large liquid ammonia spherical tank[J]. Chemical Fertilizer Design, 2017, 55(5): 42-44.
10 LIGen, SHENQing-qing, QIANGHua, et al. Structure design and magnetic attraction force simulation of a climbing robot for spherical tank grinding[J]. Light Industry Machinery, 2014, 32(4): 18-21.
11 MARCOANTONIOS T, HIGORB S, ANDRE SCHNEIDERD O, et al. Environment identification and path planning for autonomous NDT inspection of spherical storage tanks[C]//Proceedings of 13th Latin American Robotics Symposium and 4th Brazilian Symposium, Recife, Brazil, 2016, 193-198.
12 GO T, OSAWAT, NAKAMURAT, et al. Proposed locomotion strategy for a traveling-wave-type omnidirectional wall-climbing robot for spherical surfaces[C]//2015 IEEE International Conference on Robotics and Biomimetics, zhuhai, China, Dec. 6-9, 2015, 2223-2228. doi:10.1109/robio.2015.7419104
13 LIUGuo-dong, CHENXian-tao, WANGLin, et al. Application of TOFD testing on a 30003 liquid ammonia spherical tank[J]. Electric Wddmg Machine, 2017, 47(11): 117-119.
14 DYAKONOVN V, YANISHEVSKAYAA G. Computer-aided design the spherical helical platform intended for the internal surface maintenance of spherical tanks[J]. Journal of Physics: Conference Series , 2018, 1050: 012023. doi:10.1088/1742-6596/1050/1/012023
15 LILei, XIAOShi-de, DONGQing-feng, et al. Design and analysis of an interior overhaul workbench of large spherical tank[J]. Chinese Journal of Engineering Design, 2018, 25(2): 131-141.
16 WANGJ T, TONGL, MA X Y, et al. The non-contact precision measurement for spherical metrology tank[J]. Journal of Physics: Conference Series, 2018, 1065: 042029-042032.
17 SUNYu-kui, LIWen-long. Telescopic principle and structural improvement measures of QY25 truck crane boom[J]. Construction Machinery & Maintenance, 2013 (11): 193-195.
18 JIANGKai-dian. Research and application of a double cylinder seven-section telescopic boom[J]. China Plant Engineering, 2018(15): 146-147.
19 DANGWei, XUShang-guo, CHENGWei, et al. Influence factors and resolving measures for dithering problem of boom of truck crane[J]. Machine Tool & Hydraulics, 2017, 45(20): 173-175.
20 BONYONGK, SEMYONGC, SOONGH K. Natural mode analysis of a telescopic boom system with multiple sections using the Rayleigh-Ritz method[J].Journal of Mechanical Science and Technology, 2018, 32(4): 1677-1684. doi: 10.1007/s12206-018-0324-4
21 YAOF L, MENGW J, ZHAOJ, et al. Buckling theoretical analysis on all-terrain crane telescopic boom with n-stepped sections[J]. Journal of Mechanical Science and Technology, 2018, 32(8): 3637-3644. doi:10.1007/s12206-018-0715-6
22 MIL S, MILOMIRG, GORANP, et al. Stress analysis in contact zone between the segments of telescopic booms of hydraulic truck cranes[J]. Thin-Walled Structures, 2014, 85: 332-340. doi: 10.1016/j.tws.2014.09.009

[1] 郝为亮, 潘春荣, 任艳奎. 扫地机器人触发式液压辅助越障机构的设计[J]. 工程设计学报, 2021, 28(5): 569-575.
[2] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[3] 张璐, 杨树军, 李学良, 韩斌, 庞雨. 两段式液压机械无级传动机构运动特性研究[J]. 工程设计学报, 2021, 28(3): 268-277.
[4] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.
[5] 周超, 秦瑞江, 芮晓明. 风载荷作用下V形绝缘子串的力学特性分析[J]. 工程设计学报, 2021, 28(1): 95-104.
[6] 黄伟, 徐建, 陆新征, 胡明祎, 廖文杰. 动力装备和建筑楼盖的动力吸振研究[J]. 工程设计学报, 2021, 28(1): 25-32.
[7] 周超, 王阳, 芮晓明. 500 kV输电线路跳线风偏有限元分析与试验研究[J]. 工程设计学报, 2020, 27(6): 713-719.
[8] 王志力, 朱廷忠, 陈智勇, 席波, 贾小平. 贯流式水轮机调速器的机械结构和液压系统设计[J]. 工程设计学报, 2020, 27(6): 753-764.
[9] 李成兵, 雷鹏. 5 000 m3立式拱顶储罐应力分析与弱顶性能评价[J]. 工程设计学报, 2020, 27(2): 182-190.
[10] 宋建虎. 某高轨星载数传天线的振动分析[J]. 工程设计学报, 2019, 26(3): 274-279.
[11] 罗仁和, 曹晓燕, 余志强, 张永亮, 雷勇. 基于LabVIEW的车体静强度试验台测控系统[J]. 工程设计学报, 2019, 26(2): 206-214.
[12] 陈昭明, 徐泽宇, 邹劲松, 赵迎, 石明全. 隧道施工多功能铺设台车液压系统设计及其响应特征分析[J]. 工程设计学报, 2019, 26(1): 116-122.
[13] 高志来, 邱自学, 任东, 崔德友, 徐新朋. 桥式龙门铣床横梁结构设计与优化[J]. 工程设计学报, 2019, 26(1): 56-64.
[14] 王松岩, 李超宇, 徐浩. 履带牵引式换带装置液压系统动态特性研究[J]. 工程设计学报, 2018, 25(4): 488-494.
[15] 吴中义, 陈家兑, 王自勤. 一种液压式连续可变压缩比技术的研究[J]. 工程设计学报, 2018, 25(2): 142-150.