Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (3): 260-266    DOI: 10.3785/j.issn.1006-754X.2019.03.003
创新设计     
基于足底压力传感器的不控制减重比例下步态相位识别
宋广玥, 宋智斌, 项忠霞
天津大学 机械工程学院 机构理论与装备设计教育部重点实验室,天津300350
Gait phase recognition under proportion-uncontrolled body weight support based on plantar pressure sensor
SONG Guang-yue, SONG Zhi-bin, XIANG Zhong-xia
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,Tianjin University, Tianjin 300350, China
 全文: PDF(2918 KB)   HTML
摘要:

下肢外骨骼机器人是帮助下肢运动功能障碍患者步行训练的新手段,能够减轻医护人员的劳动强度,它常采用减重方式完成辅助训练。然而,对于地面行走减重外骨骼机器人系统而言,其减重比例随步态及穿戴方式变化而变化,因此不控制减重比例下的步态相位识别具有重要意义。通过搭建基于Arduino Mega2560板卡和单侧鞋内8个薄膜式压力传感器的足底压力采集系统,分别采集了正常行走、不控制减重比例减重带减重状态下行走时的足底压力信息,并采用神经网络算法进行步态相位识别。结果表明:在减重状态下行走与正常行走相比,左右脚压力值均出现明显下降且两侧具有对称性;足底每个压力传感器处的压力减小比例不同;采用神经网络算法对正常行走时步态相位总体识别率达到96.8%,对减重行走时步态相位总体识别率达到94.8%。研究结果表明该足底压力采集系统可以有效测量减重行走时的足底压力,为在地面不控制减重比例下减重带减重的外骨骼机器人控制策略的制定提供一定支持。

关键词: 步态相位识别足底压力减重神经网络    
Abstract:

The lower extremity exoskeleton robot is a new means to help patients with lower extremity motor dysfunction, which can reduce the labor intensity of therapists. Body weight support is often used to complete the auxiliary training. However, for the ground walking weight-loss exoskeleton robot system, the ratio of body weight support would change with the gait and wearing situation, so it is important to recognize the gait phase under proportion-uncontrolled body weight support. A plantar pressure acquisition system based on the Arduino Mega2560 board and eight single-membrane pressure sensors in one side shoe was established, and the plantar pressure information of normal walking and body weight support walking with weight-loss belt under proportion-uncontrolled body weight support was collected. Then, the gait phase recognition was carried out using neural network algorithm. The results showed that the pressure values of left and right feet significantly decreased and two sides were symmetrical in body weight support walking compared with normal walking, but the pressure reduction ratio of each pressure sensor was different. The gait phase recognition rate of normal walking reached 96.8% and the gait phase recognition rate of body weight support walking could still reach 94.8% by using neural network algorithm. The research results show that the plantar pressure acquisition system can effectively measure the plantar pressure under body weight support walking, and provide some support for the formulation of control strategy for body weight support exoskeleton robots with weight-loss belt under proportion-uncontrolled body weight support on the ground.

Key words: gait phase recognition    plantar pressure    body weight support    neural network
收稿日期: 2018-10-17 出版日期: 2019-06-28
CLC:  TP 391.4  
基金资助:

国家自然科学基金资助项目(51475332);天津市自然科学基金资助项目(17JCZDJC30300)

通讯作者: 宋智斌(1983—),男,天津人,副教授,博士,从事康复机器人研究,E-mail:songzhibin@tju.edu.cn,https://orcid.org/0000-0002-3715-2003     E-mail: songzhibin@tju.edu.cn
作者简介: 宋广玥(1993—),男,山东德州人,硕士生,从事下肢康复机器人研究,E-mail:SGY2058@163.com,https://orcid.org/0000-0002-1542-3749
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宋广玥
宋智斌
项忠霞

引用本文:

宋广玥, 宋智斌, 项忠霞. 基于足底压力传感器的不控制减重比例下步态相位识别[J]. 工程设计学报, 2019, 26(3): 260-266.

SONG Guang-yue, SONG Zhi-bin, XIANG Zhong-xia. Gait phase recognition under proportion-uncontrolled body weight support based on plantar pressure sensor. Chinese Journal of Engineering Design, 2019, 26(3): 260-266.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.03.003        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I3/260

1 Qing-chuanMA , JIlin-hong, WANGRen-cheng, et al. Foot-wheel driven exoskeleton for rehabilitation training of paraplegic patients[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(6): 597-603.
2 YINY H, FANY J, XUL D. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(4): 542-549. doi:10.1109/titb.2011.2178034
3 KIGUCHIK, TANAKAT, FUKUDAT, et al. Neuro-fuzzy control of a robotic exoskeleton with EMG signals[J]. IEEE Transactions on Fuzzy Systems, 2004, 2(4): 481-490. doi:10.1109/tfuzz.2004.832525
4 MA J, ZHANGY, CICHOCKIA, et al. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPS: application to robot control[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(3): 876-889. doi:10.1109/tbme.2014.2369483
5 HORTALE, PLANELLESD, COSTAA, et al. SVM-based brain-machine interface for controlling a robot arm through four mental tasks[J]. Neurocomputing, 2015, 151: 116-121. doi:10.1016/j.neucom.2014.09.078
6 HUANGZi-liang, FANGChen-hao, OUYANGXiao-ping, et al. Research on the sensing system of lower limb exoskeleton robot based on multi-information fusion[J]. Chinese Journal of Engineering Design, 2018, 25(2): 159-166.
7 JUNGJ Y, HEO W, YANGH, et al. A neural network-based gait phase classification method using sensors equipped on lower limb exoskeleton robots[J]. Sensors, 2015, 15(11): 27738-27759. doi:10.3390/s151127738
8 RAZAKA H A, ZAYEGHA, BEGGR K, et al. Foot plantar pressure measurement system: a review[J]. Sensors, 2012, 12: 9884-9912. doi:10.3390/s120709884
9 HASSANM, KADONEH, SUZUKIK, et al. Wearable gait measurement system with an instrumented cane for exoskeleton control[J]. Sensors, 2014, 14(1): 1705-1722. doi:10.3390/s140101705
10 KIM J H, HANJ W, KIM D Y, et al. Design of a walking assistance lower limb exoskeleton for paraplegic patients and hardware validation using cop[J]. International Journal of Advanced Robotic Systems, 2013, 10(2): 11-13. doi:10.5772/55336
11 GRAVANOS, IVANENKOY P, MACCIONIG, et al. A novel approach to mechanical foot stimulation during human locomotion under body weight support[J]. Human Movement Science, 2011, 30(2): 352-367. doi:10.1016/j.humov.2010.01.002
12 FLYNNT W, CANAVANP K, CAVANAGHP R, et al. Plantar pressure reduction in an incremental weight-bearing system[J]. Physical Therapy, 1997, 77: 410-416. doi:10.1093/ptj/77.4.410
13 FANGJ. Computer modelling and experimental design of a gait orthosis for early rehabilitation of walking[D].Glasgow, Scotland:University of Glasgow, College of Science and Engineering, 2013: 104-107.
14 CHAUT. A review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods[J]. Gait and Posture, 2001, 13(1): 49-66. doi:10.1016/s0966-6362(00)00094-1
15 CHAUT. A Review of analytical techniques for gait data. Part 2: Neural network and wavelet methods[J]. Gait and Posture, 2001, 13(2): 102-120. doi:10.1016/s0966-6362(00)00095-3
16 Yu-liangMA , Yun-pengMA , ZHANGQi-zhong, et al. Gait phase recognition of lower limb based on GA optimized BP neural network[J]. Chinese Journal of Sensors and Actuators, 2013, 26(9): 1183-1187.
17 MIJAILOVIN, GAVRILOVIM, RAFAJLOVIS. Gait phases recognition from accelerations and ground reaction forces: application of neural networks[J]. Telfor Journal, 2009, 1(1): 34-37.

[1] 陈亮, 陈博文, 刘晓敏, 窦昊. 用户需求映射网络生物文本的创新设计方法[J]. 工程设计学报, 2020, 27(3): 279-286.
[2] 李现坤, 曾德标, 楚王伟, 伍承旭. 基于光纤应变传感器的型架定位器位置检测方法研究[J]. 工程设计学报, 2020, 27(3): 287-292.
[3] 袁凯, 刘延俊, 孙景余, 罗星. 基于模糊RBF神经网络的水下机械臂控制研究[J]. 工程设计学报, 2019, 26(6): 675-682.
[4] 秦永峰, 龚国芳, 王飞, 孙辰晨. 基于RBF神经网络的液黏调速离合器活塞位移控制器设计[J]. 工程设计学报, 2019, 26(5): 603-610.
[5] 刘春青, 王文汉. 基于人工神经网络-遗传算法的展成法球面精密磨削参数优化[J]. 工程设计学报, 2019, 26(4): 395-402.
[6] 唐林, 许志沛, 贺田龙, 敖维川. 基于BP神经网络的转动架稳定性灵敏度分析[J]. 工程设计学报, 2018, 25(5): 576-582.
[7] 王莉, 张士兵. 基于CPSO-BP神经网络-PID的热熔胶机温控系统研究[J]. 工程设计学报, 2017, 24(5): 588-594.
[8] 钟健, 阎春平, 曹卫东, 陈诚. 基于BP神经网络和FPA的高速干切滚齿工艺参数低碳优化决策[J]. 工程设计学报, 2017, 24(4): 449-458.
[9] 李晓豁, 史尚伟, 翁正洋, 钱亚森, 李岩, 杨梓嘉. 基于BP-GA的冲击破岩掘进机工作机构动态优化[J]. 工程设计学报, 2016, 23(4): 358-363.
[10] 李晓豁,翁正洋,钱亚森,史尚伟,李 岩. 基于果蝇算法优化模糊RBF网络的液压破碎锤故障诊断[J]. 工程设计学报, 2015, 22(6): 540-545.
[11] 钟 斌. 伴随型非线性系统的自适应RBF神经网络补偿控制[J]. 工程设计学报, 2015, 22(2): 161-165.
[12] 黄元君 ,楼平,吴志军,林小峰. 新型自适应RBF神经网络应用于微带天线建模[J]. 工程设计学报, 2014, 21(5): 426-431.
[13] 胡启国, 任龙. 汽车四轮转向自适应模糊神经网络控制研究[J]. 工程设计学报, 2013, 20(5): 434-440.
[14] 原思聪, 李超, 安峰, 张琛, 王蓉. 基于组合算法的金属铣削毛刺预测[J]. 工程设计学报, 2013, 20(1): 39-43.
[15] 戚景观, 齐向东, 王兴. CMAC在三关节机械臂逆运动学求解中的应用研究[J]. 工程设计学报, 2012, 19(3): 203-207.