Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (6): 675-682    DOI: 10.3785/j.issn.1006-754X.2019.00.007
智能设计     
基于模糊RBF神经网络的水下机械臂控制研究
袁凯1,2, 刘延俊1,2,3, 孙景余1,2, 罗星3
1.山东大学 海洋研究院, 山东青岛 266237
2.山东大学 深圳研究院, 广东深圳 518057
3.山东大学 高效洁净机械制造教育部先进制造重点实验室, 山东济南 250061
Research on control of underwater manipulator based on fuzzy RBF neural network
YUAN Kai1,2, LIU Yan-jun1,2,3, SUN Jing-yu1,2, LUO Xing3
1.Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
2.Shenzhen Research Institute, Shandong University, Shenzhen 518057, China
3.Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061, China
 全文: PDF(718 KB)   HTML
摘要: 针对水下复杂工作环境下机械臂控制性能易受影响,而传统控制方法效果不佳的问题,提出了一种基于模糊RBF(radial basis function,径向基函数)神经网络的智能控制器,用于精确、稳定地控制水下机械臂。考虑到在水扰动环境下,机械臂通常受到附加质量力、水阻力和浮力的影响,运用拉格朗日法和Morison方程,建立包含水动力项的二杆机械臂动力学模型,通过模糊RBF神经网络对水下机械臂动力学方程中的水动力不确定项进行总体识别并拟合,利用模糊系统启发式搜索和RBF神经网络推理速度较快的优点,使水下机械臂系统具有较高的控制精度和较强的自适应性。考虑到水动力项,采用Lyapunov稳定性理论验证了水下机械臂系统的稳定性。最后利用MATLAB对二杆机械臂进行轨迹跟踪控制仿真实验,并对比模糊RBF神经网络与常规RBF神经网络识别方法和传统模糊控制方法的控制效果。仿真结果表明:与常规RBF神经网络识别方法相比,模糊RBF神经网络控制下二杆机械臂关节1的响应时间缩短了91%,相对误差减小了88%,关节2的响应时间缩短了92%,相对误差降低了77%;与传统模糊控制方法相比,关节1的相对误差减小了65%,关节2的相对误差减小了10%。研究结果表明模糊RBF神经网络的控制效果优于常规RBF神经网络识别方法和传统模糊控制方法,可为水下机械臂的控制提供一种精度较高、较有效的方法。
关键词: 模糊控制RBF神经网络水下机械臂控制特性    
Abstract: Aiming at the problem that the control performance of the manipulator is easily affected in the complex underwater working environment, but the traditional control method is not effective, an intelligent controller based on the fuzzy RBF (radial basis function) neural network method is proposed to control the underwater manipulator precisely and stably. In the water disturbance environment, the manipulator was usually affected by the additional mass, water resistance and buoyancy. The Lagrange method and Morison equation were used to establish a dynamics model of the two-bar manipulator, which included those hydrodynamic terms mentioned above. By using the fuzzy RBF neural network, the hydrodynamics uncertainties in the dynamics equation of the underwater manipulator were identified overall and fitted. With the advantages of heuristic search of fuzzy system and high reasoning speed of RBF neural network, the control performance of underwater manipulator system had better precision and strong adaptability. Considering the hydrodynamic terms, the stability of the underwater manipulator system was proved by using Lyapunov stability theory. Finally, the simulation experiment of trajectory tracking control for a two-bar manipulator was carried out by using MATLAB, and the control effect of fuzzy RBF neural network, conventional RBF neural network identification method and traditional fuzzy control method was compared. The simulation results showed that compared with the conventional RBF neural network identification method, under the control of fuzzy RBF neural network, the response time and relative error of joint 1 of the two-bar manipulator was reduced by 91% and 88%, the response time and relative error of joint 2 was reduced by 92% and 77%; compared with the traditional fuzzy control method, the relative error of joint 1 and joint 2 was reduced by 65% and 10%. The research results show that the control effect of fuzzy RBF neural network is better than that of conventional RBF neural network identification method and traditional fuzzy control, which can provides a high precision and effective control method for the underwater manipulator control.
Key words: fuzzy control    RBF neural network    underwater manipulator    control characteristic
收稿日期: 2019-06-24 出版日期: 2019-12-28
CLC:  TP 241  
基金资助: 深圳市科技研发资金基础研究(自由探索)资助项目(JCYJ20180305164217766);山东省重点研发计划资助项目(2019GHY112077)
通讯作者: 刘延俊(1965—),男,山东济南人,教授,博士生导师,博士,从事海洋可再生能源与深海探测技术及装备开发、流体动力控制、机械系统智能控制与动态检测等研究,E-mail:lyj111ky@163.com     E-mail: lyj111ky@163.com
作者简介: 袁凯(1995—),男,湖北应城人,硕士生,从事水下机器人控制算法设计研究,E-mail:yuankaisud@163.com, https://orcid.org/0000-0002-5480-3381
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
袁凯
刘延俊
孙景余
罗星

引用本文:

袁凯, 刘延俊, 孙景余, 罗星. 基于模糊RBF神经网络的水下机械臂控制研究[J]. 工程设计学报, 2019, 26(6): 675-682.

YUAN Kai, LIU Yan-jun, SUN Jing-yu, LUO Xing. Research on control of underwater manipulator based on fuzzy RBF neural network. Chinese Journal of Engineering Design, 2019, 26(6): 675-682.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.00.007        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I6/675

[1] MOHAN Santhakumar, KIM Jinwhan. Indirect adaptive control of an autonomous underwater vehicle-manipulator system for underwater manipulation tasks[J]. Ocean Engineering, 2012, 54(4): 233-243. doi:10.1016/j. oceaneng.2012.07. 022
[2] YUH J. A neural net controller for underwater robotic vehicles[J]. IEEE Journal of Oceanic Engineering, 1990, 15(3): 161-166. doi:10.1109/48.107144
[3] YANG Xu, LIU Hai-tao, XIAO Ju-liang, et al. Continuous friction feedforward sliding mode controller for a Trimule hybrid robot[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(4): 1673-1683. doi: 10. 1109/TMECH.2018. 2853764
[4] YANG X, ZHU L M, NI Y, et al. Modified robust dynamic control for a diamond parallel robot[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 959-968. doi:10.1109/TMECH.2019.2914165
[5] 李敏, 王家序, 肖科, 等. 基于模糊RBF神经网络动态摩擦分块补偿的机器人数字鲁棒滑模控制算法[J].中国机械工程,2012,23(23):2792-2796. doi:10.3969/j.issn. 1004-132X.2012.23.005 LI Min, WANG Jia-xu, XIAO Ke, et al. Digital robust sliding mode control of robot manipulator with dynamic friction block compensation using fuzzy RBF neural network[J]. China Mechanical Engineering, 2012, 23(23): 2792-2796.
[6] 袁伟杰, 刘贵杰, 朱绍锋. 基于遗传算法的自治水下机器人水动力参数辨识方法[J].机械工程学报,2010,46(11): 96-100. doi:10.3901/JME.2010.11.096 YUAN Wei-jie, LIU Gui-jie, ZHU Shao-feng. Identification method of hydrodynamic parameters of autonomous underwater vehicle based on genetic algorithm[J]. Journal of Mechanical Engineering, 2010, 46(11): 96-100.
[7] GONG Cheng-long, JIANG Yuan, LU Ke. RBF neural network control based on parameter adjustable CNF for robot manipulators behaviors[C]//Chinese Automation Congress (CAC), Xi'an: IEEE, 2018: 2859-2864.
[8] 肖凡, 李光, 周鑫林. 多连杆机械臂GA-RBF神经网络轨迹跟踪控制[J].机械科学与技术,2018,37(5):669-674. doi:10.13433/j.cnki.1003-8728.2018.0503 XIAO Fan, LI Guang, ZHOU Xin-lin. GA-RBF neural network control for trajectory tracking of multilink robot arm[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 669-674.
[9] 俞建成, 李强, 张艾群, 等. 水下机器人的神经网络自适应控制[J].控制理论与应用,2008,25(1):9-13. doi:10.1038/cgt.2008.5 YU Jian-cheng, LI Qiang, ZHANG Ai-qun, et al. Neural network adaptive control for underwater vehicles[J]. Control Theory & Applications, 2008, 37(5): 669-674.
[10] 余胜威. MATLAB优化算法案例分析与应用[M].北京:清华大学出版社,2014:138-144. YU Sheng-wei. Case analysis and application of MATLAB optimization algorithm[M]. Beijing: Tsinghua University Press, 2014: 138-144.
[11] 刘金琨. 机器人控制系统的设计与MATLAB仿真[M]. 北京:清华大学出版社,2008:27-42. LIU Jin-kun. Robot control system design and MATLAB simulation[M]. Beijing: Tsinghua University Press, 2008: 27-42.
[12] 魏循中. 水下机械手结构设计及动力学研究[D].青岛:中国海洋大学工程学院,2014:44-45. WEI Xun-zhong. Structure design and dynamic research of underwater manipulator[D]. Qingdao: Ocean University of China, School of Engineering, 2014: 44-45.
[13] MORISON J R, JOHNSON J W, SCHAAF S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5): 149-154. doi:10.2118/950149-g
[14] 高涵, 张明路, 张小俊, 等. 水下机械手动力学模型及力矩影响研究[J]. 机械设计与制造, 2017 (3): 68-71. doi: 10.3969/j.issn.1001-3997.2017.03.018 GAO Han, ZHANG Ming-lu, ZHANG Xiao-jun, et al. Research on underwater manipulator dynamics model and torque influence[J]. Machinery Design & Manufacture, 2017 (3): 68-71.
[15] 陈萍. 水下机械手阻抗控制技术研究[D].哈尔滨:哈尔滨工程大学机电工程学院,2009:26. CHEN Ping. Research on impedance control of underwater manipulator[D]. Harbin: Harbin Engineering University, College of Mechanical and Electrical Engineering, 2009: 26.
[16] 王华, 孟庆鑫, 王立权. 基于切片理论的水下灵巧手手指动力学分析[J].机器人,2007,29(2):160-166. doi:10.3321/j.issn:1002-0446.2007.02.012 WANG Hua, MENG Qing-xin, WANG Li-quan. Analysis on finger dynamics of dexterous underwater hand based on strip theory [J]. Robot, 2007, 29(2): 160-166.
[17] 李忠秋, 赵春雨, 洪洋, 等. 基于模糊RBF网络补偿的控制输入受限滑模控制[J]. 电子世界,2018(12):8-10. doi: 10.19353/j.cnki.dzsj.2018.12.002 LI Zhong-qiu, ZHAO Chun-yu, HONG Yang, et al. Control of input limited sliding mode based on fuzzy RBF network compensation[J]. Electronics World, 2018(12): 8-10.
[18] WOLF A, SWIFT J B, SWINNEY H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317. doi:10.1016/0167-2789(85)90011-9
[1] 丁述勇, 张征, 丁文洁, 林勇. 多巷道式立体车库优化设计与车辆存取策略研究[J]. 工程设计学报, 2021, 28(4): 443-449.
[2] 王颜, 刘净瑜, 李光, 张加波, 刘星, 周欣欣. 基于IGPS和麦克纳姆轮的AGV导航控制系统设计[J]. 工程设计学报, 2020, 27(5): 662-670.
[3] 秦永峰, 龚国芳, 王飞, 孙辰晨. 基于RBF神经网络的液黏调速离合器活塞位移控制器设计[J]. 工程设计学报, 2019, 26(5): 603-610.
[4] 段志强, 郭彦青, 王龙. 大惯量专用转台高精度控制研究[J]. 工程设计学报, 2019, 26(2): 162-169.
[5] 胡俊峰, 李永明, 郑昌虎. 基于模糊控制的微操作平台位置精度补偿方法[J]. 工程设计学报, 2018, 25(2): 123-130.
[6] 谢苗, 刘治翔, 毛君. 立体停车位液压系统控制策略及节能控制技术研究[J]. 工程设计学报, 2017, 24(1): 115-120.
[7] 李富贵, 龙伟, 罗亮, 詹从来. 预测模糊控制在液化天然气调峰系统的应用[J]. 工程设计学报, 2016, 23(1): 95-100.
[8] 刘智光,于 菲,张 靓,李铁军,安占法. 基于模糊自适应阻抗控制的机器人接触力跟踪[J]. 工程设计学报, 2015, 22(6): 569-574.
[9] 李晓豁,翁正洋,钱亚森,史尚伟,李 岩. 基于果蝇算法优化模糊RBF网络的液压破碎锤故障诊断[J]. 工程设计学报, 2015, 22(6): 540-545.
[10] 钟 斌. 伴随型非线性系统的自适应RBF神经网络补偿控制[J]. 工程设计学报, 2015, 22(2): 161-165.
[11] 吕宽州,陈素霞,黄全振. 柔性机械臂的轨迹跟踪与振动模糊控制[J]. 工程设计学报, 2015, 22(1): 78-83.
[12] 雷飞,杨红波. 基于模糊控制的商用车驾驶室悬置有限带宽主动控制系统研究[J]. 工程设计学报, 2014, 21(1): 32-37.
[13] 万晓凤, 雷继棠, 易其军, 贾进学, 张燕飞, 丁卯. 基于车速反馈的AMT离合器起步接合控制[J]. 工程设计学报, 2013, 20(5): 441-445.
[14] 顾星, 钟鸣, 姚玉峰. 基于模糊自适应PID的加样臂位置控制[J]. 工程设计学报, 2012, 19(5): 385-390.
[15] 郭孔辉, 隋记魁, 宋晓琳, 郭耀华, 薛冰. 高速车辆横向减振器模糊天棚半主动控制研究[J]. 工程设计学报, 2012, 19(3): 174-181.