Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (2): 123-130    DOI: 10.3785/j.issn.1006-754X.2018.02.001
设计理论与方法学     
基于模糊控制的微操作平台位置精度补偿方法
胡俊峰, 李永明, 郑昌虎
江西理工大学 机电工程学院, 江西 赣州 341000
Position precision compensation method of a micro-manipulation stage based on fuzzy control
HU Jun-feng, LI Yong-ming, ZHENG Chang-hu
School of Mechanical & Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
 全文: PDF(3427 KB)   HTML
摘要:

由于压电式微操作平台的迟滞非线性会导致其位置精度和动态性能下降,且难以建立精确的迟滞非线性模型,采用一种基于模糊控制策略的位置精度补偿方法,以摆脱对迟滞模型的依赖。以一种一维压电式微操作平台为对象,以平台的位置偏差与偏差变化率为模糊输入,压电驱动器输入电压变化量为模糊输出,提出采用基于PID控制的实验数据获取经验来制定模糊规则的方法。通过模糊推理和解模糊过程,建立平台输入量与输出量之间的模糊关系,实现了可消除迟滞现象的自适应补偿。为了说明所提出的位置精度补偿方法的可行性,通过实验与PID控制进行比较,分析平台跟踪不同频率正弦信号的位置误差。实验结果表明,所提出的模糊控制方法能使平台具有更高的位置跟踪精度和更快的跟踪速度,并具有较好的自适应性。

关键词: 微操作平台模糊控制位置精度补偿迟滞非线性    
Abstract:

The hysteresis nonlinearity of piezoelectric micro-manipulation stage leads to the decrease of its position accuracy and dynamic performance, and it is hard to establish the accurate hysteresis model. A position accuracy compensation method was adopted based on the fuzzy control strategy to get rid of the dependence on hysteretic model. As for a one-dimensional micro-manipulation stage, the position deviation and deviation variation rate of the stage was used as fuzzy input, and the input voltage change of piezoelectric actuator was used as fuzzy output. A method of developing fuzzy rules was presented based on experiment data of PID control to acquire experience. The fuzzy relationship between the stage input and output by fuzzy reasoning and de-fuzzy process was established, and the adaptive compensation of hysteresis could be realized. In order to illustrate the feasibility of the proposed method, the experimental comparative analysis with PID control was carried out. The position errors were compared when the stage was tracking the sine signals with different frequencies. The experimental results show that the proposed fuzzy control method can make the stage have higher position tracking accuracy and faster tracking speed, and has better adaptability.

Key words: micro-manipulation stage    fuzzy control    position precision compensation    hysteresis nonlinearity
收稿日期: 2017-09-16 出版日期: 2018-04-28
CLC:  TH703  
基金资助:

国家自然科学基金资助项目(51565016,51265016);江西省自然科学基金资助项目(20171BAB206029);江西省教育厅科学技术研究项目(GJJ160612);江西省杰出青年人才资助项目(20171BCB23063)

作者简介: 胡俊峰(1978-),男,江西临川人,副教授,博士,从事微操作技术研究,E-mail:hjfsuper@126.com,http://orcid.org/0000-0002-1711-5475
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡俊峰
李永明
郑昌虎

引用本文:

胡俊峰, 李永明, 郑昌虎. 基于模糊控制的微操作平台位置精度补偿方法[J]. 工程设计学报, 2018, 25(2): 123-130.

HU Jun-feng, LI Yong-ming, ZHENG Chang-hu. Position precision compensation method of a micro-manipulation stage based on fuzzy control. Chinese Journal of Engineering Design, 2018, 25(2): 123-130.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.02.001        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I2/123

[1] 胡俊峰,徐贵阳,郝亚洲.基于响应面法的微操作平台多目标优化[J].光学精密工程,2015,23(4):1096-1104. HU Jun-feng, XU Gui-yang, HAO Ya-zhou. Multi-objective optimization of a novel micro-manipulation stage based on response surface method[J]. Optics and Precision Engineering, 2015, 23(4):1096-1104.
[2] 胡俊峰,郝亚洲,徐贵阳,等.一种新型微操作平台的精确运动控制[J].机械科学与技术,2016,35(2):216-221. HU Jun-feng, HAO Ya-zhou, XU Gui-yang, et al. Precision motion control of a novel micro-manipulation stage[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(2):216-221.
[3] LIN C J, LIN P T. Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model[J]. Computers & Mathematics with Applications, 2012, 64(5):766-787.
[4] JIANG H, JI H, QIU J, et al. A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2010, 57(5):1200-1210.
[5] VOMINH T, TJAHJOWIDODO T, RAMON H, et al. A new approach to modeling hysteresis in a pneumatic artificial muscle using the Maxwell-slip model[J]. IEEE/ASME Transaction on Mechatronics, 2011, 16(1):177-186.
[6] CHEN Yuan-sheng, QIU Jin-hao, PALACIOS Jose, et al. Tracking control of piezoelectric stack actuator using modified Prandtl Ishlinskii model[J]. Journal of Intelligent Material Systems and Structures, 2012, 24(6):753-760.
[7] LIU Y J, TONG S. Adaptive fuzzy control for a class of unknown nonlinear dynamical systems[J]. Fuzzy Sets & Systems, 2015, 263(5):49-70.
[8] LI Y, SUI S, TONG S. Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics[J]. IEEE Transactions on Cybernetics, 2017, 47(2):403-414.
[9] 刘章文,李正东,周志强,等.基于模糊控制的自适应光学校正技术[J].物理学报,2016,65(1):1-8. LIU Zhang-wen, LI Zheng-dong, ZHOU Zhi-qiang, et al. Adaptive optics correction technique based on fuzzy control[J]. Acta Physica Sinica, 2016, 65(1):1-8.
[10] 刘经宇,尹文生,朱煜.模糊PID控制在纳米微动台系统中的应用[J].控制工程,2011,18(2):254-257. LIU Jing-yu, YIN Wen-sheng, ZHU Yu. Application of adaptive fuzzy PID controller to nano-scale precision motion stage system[J]. Control Engineering of China, 2011, 18(2):254-257.
[11] 张建雄,孙宝元,王红艳.基于压电陶瓷驱动器(PZT)驱动的二维微动工作台系统及控制方法的研究[J].机床与液压,2006(7):11-13. ZHANG Jian-xiong, SUN Bao-yuan, WANG Hong-yan. Micro-drive positioning system based on PZT and its control[J]. Machine Tool & Hydraulics, 2006(7):11-13.
[12] 胡俊峰,郑昌虎,蔡建阳.基于支持向量机的压电微操作平台非线性特性描述[J].中国机械工程,2016,27(22):3012-3018. HU Jun-feng, ZHENG Chang-hu, CAI Jian-yang. Description of nonlinear characteristics of piezoelectric micro-manipulation stage based on SVM[J]. China Mechanical Engineering, 2016, 27(22):3012-3018.
[13] 石辛民,郝整清.模糊控制及其MATLAB仿真[M].北京:清华大学出版社,2008:141-148. SHI Xin-min, HAO Zheng-qing. Fuzzy logic control and simulation in MATLAB[M]. Beijing:Tsinghua University Press, 2008:141-148.

[1] 丁述勇, 张征, 丁文洁, 林勇. 多巷道式立体车库优化设计与车辆存取策略研究[J]. 工程设计学报, 2021, 28(4): 443-449.
[2] 王颜, 刘净瑜, 李光, 张加波, 刘星, 周欣欣. 基于IGPS和麦克纳姆轮的AGV导航控制系统设计[J]. 工程设计学报, 2020, 27(5): 662-670.
[3] 袁凯, 刘延俊, 孙景余, 罗星. 基于模糊RBF神经网络的水下机械臂控制研究[J]. 工程设计学报, 2019, 26(6): 675-682.
[4] 段志强, 郭彦青, 王龙. 大惯量专用转台高精度控制研究[J]. 工程设计学报, 2019, 26(2): 162-169.
[5] 谢苗, 刘治翔, 毛君. 立体停车位液压系统控制策略及节能控制技术研究[J]. 工程设计学报, 2017, 24(1): 115-120.
[6] 李富贵, 龙伟, 罗亮, 詹从来. 预测模糊控制在液化天然气调峰系统的应用[J]. 工程设计学报, 2016, 23(1): 95-100.
[7] 刘智光,于 菲,张 靓,李铁军,安占法. 基于模糊自适应阻抗控制的机器人接触力跟踪[J]. 工程设计学报, 2015, 22(6): 569-574.
[8] 胡俊峰,郝亚洲,郑昌虎. 减小温度效应的精密微操作平台稳健优化设计[J]. 工程设计学报, 2015, 22(6): 581-588.
[9] 胡俊峰,郝亚洲,徐贵阳,杨 健. 考虑温度效应的微操作平台的建模与性能分析[J]. 工程设计学报, 2015, 22(2): 143-154.
[10] 吕宽州,陈素霞,黄全振. 柔性机械臂的轨迹跟踪与振动模糊控制[J]. 工程设计学报, 2015, 22(1): 78-83.
[11] 雷飞,杨红波. 基于模糊控制的商用车驾驶室悬置有限带宽主动控制系统研究[J]. 工程设计学报, 2014, 21(1): 32-37.
[12] 万晓凤, 雷继棠, 易其军, 贾进学, 张燕飞, 丁卯. 基于车速反馈的AMT离合器起步接合控制[J]. 工程设计学报, 2013, 20(5): 441-445.
[13] 顾星, 钟鸣, 姚玉峰. 基于模糊自适应PID的加样臂位置控制[J]. 工程设计学报, 2012, 19(5): 385-390.
[14] 郭孔辉, 隋记魁, 宋晓琳, 郭耀华, 薛冰. 高速车辆横向减振器模糊天棚半主动控制研究[J]. 工程设计学报, 2012, 19(3): 174-181.
[15] 王琳琳, 胡惠佚, 田慧艺, 唐兴伦. 自适应模糊控制在旋挖钻机钻桅垂直度控制上的应用[J]. 工程设计学报, 2011, 18(4): 298-302.