Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (2): 142-150    DOI: 10.3785/j.issn.1006-754X.2018.02.003
创新设计     
一种液压式连续可变压缩比技术的研究
吴中义, 陈家兑, 王自勤
贵州大学 现代制造技术教育部重点实验室, 贵州 贵阳 550025
Research on a hydraulic continuous variable compression ratio technique
WU Zhong-yi, CHEN Jia-dui, WANG Zi-qin
Key Laboratory of Modern Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China
 全文: PDF(2461 KB)   HTML
摘要:

为进一步提高发动机燃烧效率,减少发动机有害气体的排放,提出了一种液压式连续可变压缩比技术的设计方案。它是通过液压系统控制偏心销转动来改变上止点的位置,从而使燃烧室体积发生变化,实现在调节区间内任意连续可变压缩比的改变。首先,根据所设计的方案分析了其液压系统在2个不同阶段的调节工作原理;然后,利用三维软件Solidworks2010对整个系统进行三维建模,根据模型设计的具体尺寸,得到连续可变压缩比调节的范围为8.81~22.43;最后分析了不同转速下活塞系统综合力(活塞惯性力和活塞表面气体压力的合力)的变化情况,并通过MATLAB与AMESim对构建的液压系统进行了联合仿真试验,探究了不同转速下活塞系统综合力向上和向下时液压系统的流量特性和压力特性。仿真结果表明:发动机转速在中低速条件下,活塞系统调节响应迅速,具有良好的动态特性,证明该设计具有一定实用性。仿真结果为用于液压容积调节的连续可变压缩比技术的实际应用提供了理论依据,具有重要的实际指导意义。

关键词: 连续可变压缩比液压系统动态特性    
Abstract:

In order to improve the combustion efficiency of engine and reduce the emission of harmful gas, a design scheme of hydraulic continuous variable compression ratio (VCR) technique of engine was proposed. It was through the hydraulic system to control the eccentric pin rotation to change the location of the top dead center (TDC), so that the volume of the combustion chamber was changed to achieve the change of any continuous VCR in the adjustment interval. Firstly, the working principle of the hydraulic system in two different stages was analyzed according to the designed scheme. Then, 3D software Solidworks 2010 was used to model the whole system, and the range of continuous VCR (8.81-22.43) was calculated according to the specific size of the model design. Lastly, the change of the comprehensive force (inertial force of piston system and gas pressure at the piston surface) under different speed was analyzed, and the combined simulation test of the constructed hydraulic system was carried out by MATLAB and AMESim. The flow characteristics and pressure characteristics of the hydraulic system was explored at different speeds respectively with the resultant force exerts up and down. The simulation results showed that the piston system had fast response and good dynamic characteristics under the condition of medium and low speed, and the proposed design was proved usefully. The simulation results provide a theoretical basis for practical application of continuous VRC technique for hydraulic volume control, which has important practical guiding significance.

Key words: continuously variable compression ratio    hydraulic system    dynamic characteristic
收稿日期: 2017-08-08 出版日期: 2018-04-28
CLC:  TH113  
基金资助:

国家科技支撑计划资助项目(2014BAH05F01);贵州省科技厅项目(黔科合LH字[2014]7626)

通讯作者: 陈家兑(1979-),男,广西玉林人,副教授,博士,从事CAE技术及发动机节能技术研究,E-mail:249532095@qq.com     E-mail: 249532095@qq.com
作者简介: 吴中义(1990-),男,安徽桐城人,硕士生,从事特色装配技术研究,E-mail:98716379@qq.com,http://orcid.org/0000-0002-9802-4005
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴中义
陈家兑
王自勤

引用本文:

吴中义, 陈家兑, 王自勤. 一种液压式连续可变压缩比技术的研究[J]. 工程设计学报, 2018, 25(2): 142-150.

WU Zhong-yi, CHEN Jia-dui, WANG Zi-qin. Research on a hydraulic continuous variable compression ratio technique. Chinese Journal of Engineering Design, 2018, 25(2): 142-150.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.02.003        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I2/142

[1] SUGIYAMA T, HIYOSHI R, TAKEMURA S, et al. Technology for improving engine performance using variable mechanisms[J]. SAE Paper, 2007-01-1290.
[2] DRANGLE H, OLOFSSON E, REINANN R. The variable compression(SVC) and the combustion control(SCC) two ways to improve fuel economy and still comply with world-wide emission requirements[J]. SAE Paper, 2002-02-0996.
[3] RABHI D, RABHI V, RANSON P. Gear design and dimensioning study for a variable compression ratio engine[J]. SAE Paper, 2005-01-3131.
[4] TAKAHASHI N, AOYAMA S, MOTEKI K, et al. A study concerning the noise and vibration characteristics of an engine with multi-link variable compression ratio mechanism[J]. SAE Paper, 2005-01-1134.
[5] 欧阳林,董健,李格升,等.可变燃烧室(VCC)活塞设计及其动力学特性[J].内燃机工程,2014,35(3):69-74. OUYANG Lin, DONG Jian, LI Ge-sheng, et al. Design of VCC piston and its dynamics characteristics[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(3):69-74.
[6] LIU Chang-hai, JIANG Hong-zhou. Influence of magnetic reluctances of magnetic elements on servo valve torque motors[J]. Chinese Journal of Mechanical Engineering, 2016, 29(1):136-144.
[7] 林承伯,刘敬平,唐琦军,等.一种可变压缩比机构对汽油机性能的影响[J].内燃机工程,2015,36(6):84-90. LIN Cheng-bo, LIU Jing-ping, TANG Qi-jun, et al. The influence of the variable compression ratio mechanism on gasoline engine performance[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(6):84-90.
[8] 宋进桂.可变压缩比活塞[J].车用发动机,1988(5):62-63. SONG Jin-gui. Variable compression ratio piston[J]. Vehicle Engine, 1988(5):62-63.
[9] 方晓瑜,赵宏强,文国臣.基于AMESim恒功率变量泵的仿真研究[J].工程设计学报,2011,18(6):437-443. FANG Xiao-yu, ZHAO Hong-qiang, WEN Guo-chen. Simulation research on constant power variable pump based on AMESim[J]. Chinese Journal of Engineering Design, 2011, 18(6):437-443.
[10] 涂波,田华,卫海桥,等.电液驱动可变气机构缓冲过程研究[J].中国机械工程,2016,27(19):2652-2658. TU Bo, TIAN Hua, WEI Hai-qiao, et al. Research on buffering process of electro-hydraulic variable valve train[J]. China Mechanical Engineering, 2016, 27(19):2652-2658.
[11] 朱冰,赵健,李静,等.面向牵引力控制系统的AMESim与MATLAB联合仿真平台[J].吉林大学学报(工学版),2008,38(S1):23-27. ZHU Bing, ZHAO Jian, LI Jing, et al. Co-simulation platform with AMESim and MATLAB for traction control system[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(S1):23-27.
[12] 吴中义,王自勤,田丰果,等.基于AMESim液压配气气门落座平稳性的研究[J].机床与液压,2017,45(13):136-138,142. WU Zhong-yi, WANG Zi-qin, TIAN Feng-guo, et al. Research on the seating stability of the distribution gas valve based on AMESim[J]. Machine Tool & Hydraulics, 2017, 45(13):136-138, 142.
[13] 张素英.发动机可变压缩比系统及其控制方法:CN201410615989.7[P].2015-04-22. ZHANG Su-ying. Engine variable compression ratio system and its control method:CN201410615989.7[P]. 2015-04-22.
[14] 吴中义.液压式均质压燃控制系统动态特性研究[D].贵阳:贵州大学现代制造技术教育部重点实验室,2017:64-67. WU Zhong-yi. Research on dynamic characteristics of hydraulic homogeneous charge ignition control system[D]. Guiyang:Guizhou University, Key Laboratory of Modern Manufacturing Technology, Ministry of Education, 2017:64-67.
[15] 袁士豪,殷晨波,刘世豪.基于AMESim的平衡阀动态性能分析[J].农业机械学报,2013,44(8):273-280. YUAN Shi-hao, YIN Chen-bo, LIU Shi-hao. Working properties of counterbalance valve based on AMESim code[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8):273-280.
[16] 卢宁,付永领,孙新学.基于AMEsim的双压力柱塞泵的数字建模与热分析[J].北京航空航天大学学报,2006,32(9):1055-1058,1086. LU Ning, FU Yong-ling, SUN Xin-xue. Digital modeling of double press axial piston pump and its thermal analysis is basing on AMESim[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(9):1055-1058, 1086.
[17] ZHOU Hua, CHEN Ying-long, ZHANG Zeng-meng, et al. Simulation and experiment research on the proportional pressure control of water-assisted injection molding[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3):430-438.
[18] LI Wan-guo, FU Yong-ling, CHEN Juan, et al. Variants of secondary control with power recovery for loading hydraulic driving device[J]. Chinese Journal of Mechanical Engineering, 2015, 28(3):618-633.

[1] 田助新,郭明慧,曹海印. 环形油腔液体静压推力轴承动态特性的影响因素研究[J]. 工程设计学报, 2022, 29(4): 456-464.
[2] 王学军,普江华,陈明方. 自动化生产线用同步带传动升降机的动态特性分析[J]. 工程设计学报, 2022, 29(2): 212-219.
[3] 王志力, 朱廷忠, 陈智勇, 席波, 贾小平. 贯流式水轮机调速器的机械结构和液压系统设计[J]. 工程设计学报, 2020, 27(6): 753-764.
[4] 张超, 韩晓明, 李强, 李池. 冲击载荷下永磁式电涡流减振器设计及动态特性分析[J]. 工程设计学报, 2020, 27(6): 786-794.
[5] 姜晓飞, 张冠伟, 胡永秀, 张大卫. 数控机床整机动态特性评价方法[J]. 工程设计学报, 2020, 27(2): 135-145.
[6] 罗茹楠, 牛文铁, 王晨升. 基于机电-刚柔耦合特性的进给系统动态误差影响因素分析[J]. 工程设计学报, 2019, 26(5): 561-569.
[7] 陈昭明, 徐泽宇, 邹劲松, 赵迎, 石明全. 隧道施工多功能铺设台车液压系统设计及其响应特征分析[J]. 工程设计学报, 2019, 26(1): 116-122.
[8] 王松岩, 李超宇, 徐浩. 履带牵引式换带装置液压系统动态特性研究[J]. 工程设计学报, 2018, 25(4): 488-494.
[9] 陈洪月, 刘烈北, 毛君, 宋秋爽, 袁智. 激励与滚筒振动耦合下采煤机动力学特性分析[J]. 工程设计学报, 2016, 23(3): 228-234.
[10] 刘媛媛,张 氢,秦仙蓉,孙远韬. 双折线卷筒岸桥起升系统动态特性研究[J]. 工程设计学报, 2015, 22(5): 359-364.
[11] 张 振,龚国芳,饶云意,吴伟强,刘 统. TBM试验台支撑推进液压系统设计与仿真分析[J]. 工程设计学报, 2015, 22(5): 324-329.
[12] 张 振,龚国芳,饶云意,吴伟强,刘 统. TBM试验台支撑推进液压系统设计与仿真分析[J]. 工程设计学报, 2015, 22(4): 324-329.
[13] 刘媛媛,张 氢,秦仙蓉,孙远韬. 双折线卷筒岸桥起升系统动态特性研究[J]. 工程设计学报, 2015, 22(4): 359-364.
[14] 谢 苗,白雅静,毛 君,董先瑞,卢进南. 不同工况下超前支护装备的模态分析[J]. 工程设计学报, 2015, 22(3): 236-242.
[15] 杨忠炯,鲁耀中,周立强,李洪宾. 基础振动下TBM推进液压系统工作特性研究[J]. 工程设计学报, 2015, 22(3): 278-283.