Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (5): 626-633    DOI: 10.3785/j.issn.1006-754X.2023.00.069
产品创新设计     
正交簧片型大行程柔性球铰设计及柔度分析
谢超(),陈云壮,石光楠,赖磊捷()
上海工程技术大学 机械与汽车工程学院,上海 201620
Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds
Chao XIE(),Yunzhuang CHEN,Guangnan SHI,Leijie LAI()
School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
 全文: PDF(4904 KB)   HTML
摘要:

传统缺口型柔性球铰的工作行程较小,且存在结构构型及柔度计算复杂、加工工艺要求高等问题,不能应用于需大行程的场合。为此,设计了一种正交簧片型大行程柔性球铰,即将具有较大变形能力的簧片梁通过正交组合形成虎克铰,使其能够实现3个功能轴线方向的运动。该柔性球铰具有结构构型简单、加工制作容易和工作行程较大等优点。根据柔性球铰单个簧片梁的柔度矩阵及连接方式,采用柔度矩阵法和坐标变换方法,对柔性球铰的全局柔度矩阵进行建模和计算,通过有限元仿真和实验测试对所建立的柔度模型进行验证,并分析了柔性球铰几何参数对柔度的影响规律。结果表明:柔度理论计算值与仿真值的相对误差基本在10%以内,与测试值的相对误差在8%以内;几何参数对柔度影响程度从大到小依次是柔性簧片梁2的厚度、宽度、长度。研究结果可以为大行程空间柔顺机构的多样化设计提供参考。

关键词: 簧片柔性球铰大行程有限元分析柔度    
Abstract:

The traditional notched flexible ball hinge has smaller working stroke, complex structural configuration and compliance calculation, and high processing requirements, so it can not be applied to the occasions requiring large stroke. Therefore, a large stroke flexible ball hinge with orthogonal reeds was designed, which meant that the reed beam with large deformation capacity could form a Hooke joint through orthogonal combination, enabling it to achieve movement in three functional axis directions. The flexible ball hinge had the advantages of simple structural configuration, easy processing and manufacturing, and large working stroke. Based on the compliance matrix and connection type of a single reed beam of the flexible ball hinge, the global compliance matrix of the flexible ball hinge was modeled and calculated by the compliance matrix method and coordinate transformation method. The established compliance model was verified through finite element simulation and experimental test, and the influence of geometric parameters of the flexible ball hinge on compliance was analyzed. The results showed that the relative error between the theoretical calculating value and the simulated value of compliance was basically within 10%, and the relative error between the calculated value and the test value was within 8%; the influence degree of geometric parameters on compliance was in descending order: thickness, width and length of reed beam 2. The research results can provide reference for the diversified design of large stroke spatial compliant mechanism.

Key words: reed    flexible ball hinge    large stroke    finite element analysis    compliance
收稿日期: 2023-03-08 出版日期: 2023-11-03
CLC:  TH 132  
基金资助: 国家自然科学基金资助项目(51605275);上海市自然科学基金资助项目(21ZR1426000);机械系统与振动国家重点实验室课题资助项目(MSV202210)
通讯作者: 赖磊捷     E-mail: silencexc@126.com;lailj@sues.edu.cn
作者简介: 谢 超(1999—),男,安徽芜湖人,硕士生,从事微纳米定位技术研究,E-mail: silencexc@126.com, https://orcid.org/0009-0006-1363-1188
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢超
陈云壮
石光楠
赖磊捷

引用本文:

谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.

Chao XIE,Yunzhuang CHEN,Guangnan SHI,Leijie LAI. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chinese Journal of Engineering Design, 2023, 30(5): 626-633.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.069        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I5/626

图1  大行程柔性球铰的结构
图2  大行程柔性球铰变形原理示意
图3  簧片梁示意图
参数计算公式
Cδx-Fxl/(Etw)
Cδy-Fy4l3/(Et3w)
Cδz-Fz4l3/(Etw3)
Cθx-Mxl/(GJ)
Cθy-My12l/(Etw3)
Cθz-Mz12l/(Et3w)
Cδy-Mz6l2/(Et3w)
Cδz-My6l2/(Etw3)
Cθy-Fz6l2/(Etw3)
Cθz-Fy6l2/(Et3w)
表1  簧片梁柔度矩阵的参数及其计算公式
图4  柔性球铰的截面
图5  柔性铰链的弹簧模型
参数数值参数数值
E/GPa71.70w1/mm18.00
G/GPa26.69w2/mm3.50
ν0.33t1/mm1.00
l1/mm10.00t2/mm1.00
l2/mm40.00p/mm7.25
表2  柔性球铰的材料参数和几何参数
图6  柔性球铰仿真模型的网格划分
图7  柔性球铰静力学仿真分析结果
柔度计算值仿真值相对误差/%
Cδy-Fy/(mm/N)1.013 91.112 68.87
Cδz-Fz/(mm/N)1.300 01.458 310.85
Cθx-Mx/(rad/(N·m))1.316 31.426 07.69
Cδy-MzCθz-Fy/(rad/N)0.029 50.031 97.52
Cδz-MyCθy-Fz/(rad/N)-0.034 2-0.033 03.64
Cθy-My,Cθz-Mz/(rad/(N·m))1.061 51.032 32.83
表3  柔性球铰柔度理论计算和仿真分析结果
图8  柔性球铰柔度测试装置
图9  柔性球铰y、 z向的力—位移曲线
图10  柔性球铰扭矩—扭角曲线
图11  簧片梁2的几何参数对柔性球铰柔度的影响
1 姜玉涛,张银.双轴椭圆切口型柔性球铰柔度建模及分析[J].自动化与仪器仪表,2022(2):33-42.
JIANG Y T, ZHANG Y. Compliance modeling and analysing of double-axis elliptical are flexure hinge[J]. Automation and Instrumentation, 2022 (2): 33-42.
2 SETO W, SITTI M. Tank-like module-based climbing robot using passive complaint joints[J]. IEEE/ASME Transaction on Mechatronics, 2013, 18(1): 397-408.
3 曹毅,王保兴,孟刚,等. 大行程三平动柔性微定位平台的设计分析及优化[J].机械工程学报,2020,56(17):71-81. doi:10.3901/jme.2020.17.071
CAO Y, WANG B X, MENG G, et al. Design analysis and optimization of large range spatial translational compliant micro-positioning stage[J]. Journal of Mechanical Engineering, 2020, 56(17): 71-81.
doi: 10.3901/jme.2020.17.071
4 李立建,马爱霞,姚建涛,等. 柔性并联六维力传感器力映射解析研究[J].机械工程学报,2017,53(7):30-38. doi:10.3901/jme.2017.07.030
LI L J, MA A X, YAO J T, et al. Force mapping analytical research of flexible parallel six-axis force/torque sensor[J]. Journal of Mechanical Engineering, 2017, 53(7): 30-38.
doi: 10.3901/jme.2017.07.030
5 ZHENG Y L, YONG S I, CHOI H R, et al. An automated focusing method for a parallel micro-manipulator alignment[J]. Microsystem Technologies, 2016, 22(6): 1501-1509.
6 SINNO A, RUAUX P, CHASSAGNE L, et al. Enlarged atomic force microscopy scanning scope: Novel sample-holder device with millimeter range[J]. Review of Scientific Instruments, 2007, 78(9): 095107-095117.
7 LAN H, DING Y, LIU L, et al. Review of the wafer stage for nanoimprint lithography[J]. Microelectronic Engineering, 2007, 84 (4): 684-688.
8 于靖军,郝广波,陈贵敏,等. 柔性机构及其应用研究进展[J].机械工程学报,2015,51(13):53-68. doi:10.3901/jme.2015.13.053
YU J J, HAO G B, CHEN G M, et al. Research progress in flexible mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68.
doi: 10.3901/jme.2015.13.053
9 杨德华,程颖,吴常铖,等. 一种基于双正交弹性簧片的球链:CN108050151A[P].2018-05-18.
YANG D H, CHENG Y, WU C C, et al. A ball chain based on biorthogonal elastic spring: CN108050151A[P]. 2018-05-18.
10 LONBONTIU N, GARLOBONTIU N, GARCIAE E . Two-axis flexure hinges with axially collocated and symmetric notches[J]. Computers and Structures, 2003,81: 1329-1341.
11 朱仁胜,沈健.双轴柔性铰链柔度的设计计算[J].合肥工业大学学报,2009,32(9):1370-1373.
ZHU R S, SHEN J. Design and calculation of flexibility of two-axis flexible hinge[J]. Journal of Hefei University of Technology, 2009, 32(9): 1370-1373.
12 陈应舒,朱淳逸. 椭圆弧型柔性球铰的柔度矩阵计算与分析[J].机械设计与研究,2015,31(5):51-54,61.
CHEN Y S, ZHU C Y. Calculation and analysis of flexibility matrix of elliptical arc flexible spherical joint[J]. Mechanical Design and Research, 2015, 31(5): 51-54, 61.
13 LOBONTIU N.Compliant mechanisms: Design of flexure hinges[M]. London: CRC Press, 2003.
14 于靖军,毕树生,裴旭,等.柔性设计:柔性机构的分析与综合[M].北京:高等教育出版社,2018:107-114.
YU J J, BI S S, PEI X, et al. Flexible design: Analysis and synthesis of flexible mechanisms[M]. Beijing: Higher Education Press, 2018: 107-114.
15 李政.二自由度大行程微定位平台设计与运动控制[D].天津:天津大学,2014:20-27.
LI Z. Design and motion control of two-degree-of-freedom large-stroke micro-positioning platform[D]. Tianjin: Tianjin University, 2014: 20-27.
16 刘鸿文.材料力学[M].北京:高等教育出版社,1992.
LIU H W. Material mechanics[M]. Beijing: Higher Education Press, 1992.
17 AL-JODAH A, SHIRINZADEH B, GHAFARIAN M, et al. Modeling and a cross-coupling compensation control methodology of a large range 3-DOF micropositioner with low parasitic motions[J]. Mechanism and Machine Theory, 2023, 162: 104334.
18 于阳,王学问,徐振邦,等.基于柔性铰链的大口径望远镜并联调整机构[J].光学精密工程,2023,31(3):352-362. doi:10.37188/ope.20233103.0352
YU Y, WANG X W, XU Z B, et al. Parallel adjustment mechanism for large aperture telescope based on flexible hinges[J]. Optical Precision Engineering, 2023, 31(3): 352-362.
doi: 10.37188/ope.20233103.0352
19 杨春辉,刘平安.圆弧型柔性球铰柔度设计计算[J].工程设计学报,2014,21(4):389-392,404. doi:10.3785/j.issn.1006-754X.2014.04.014
YANG C H, LIU P A. Design and calculation of flexibility of circular arc flexible spherical joint[J]. Chinese Journal of Engineering Design, 2014, 21(4): 389-392, 404.
doi: 10.3785/j.issn.1006-754X.2014.04.014
[1] 张涛,王开松,唐威,秦可成,刘阳,石雨豪,邹俊. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.
[2] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[3] 李三平,孙腾佳,袁龙强,吴立国. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报, 2022, 29(6): 684-694.
[4] 赵致勃,顾大强,李立新,张靖. 基于接触应力优化的摆线轮修形设计[J]. 工程设计学报, 2022, 29(6): 713-719.
[5] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[6] 张旭,赖磊捷,朱利民. 超精密大行程麦克斯韦磁阻驱动器磁场建模与推力分析[J]. 工程设计学报, 2022, 29(6): 748-756.
[7] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[8] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[9] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[10] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.
[11] 黄伟, 徐建, 陆新征, 胡明祎, 廖文杰. 动力装备和建筑楼盖的动力吸振研究[J]. 工程设计学报, 2021, 28(1): 25-32.
[12] 周超, 秦瑞江, 芮晓明. 风载荷作用下V形绝缘子串的力学特性分析[J]. 工程设计学报, 2021, 28(1): 95-104.
[13] 周超, 王阳, 芮晓明. 500 kV输电线路跳线风偏有限元分析与试验研究[J]. 工程设计学报, 2020, 27(6): 713-719.
[14] 李成兵, 雷鹏. 5 000 m3立式拱顶储罐应力分析与弱顶性能评价[J]. 工程设计学报, 2020, 27(2): 182-190.
[15] 刘召, 由宏新, 孙亮, 杨玉玲, 刘华清. 大型球罐悬吊式液压传动回转检测平台设计[J]. 工程设计学报, 2019, 26(3): 267-273.