Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (6): 720-730    DOI: 10.3785/j.issn.1006-754X.2022.00.090
优化设计     
Al/CFRP混合薄壁结构耐撞性能可靠性优化设计
张正峰1,2(),宋小雨3,袁晓磊1(),陈文娟2,张伟东4
1.长安大学 汽车学院,陕西 西安 710064
2.陕西汽车控股集团有限公司,陕西 西安 710042
3.中铝材料应用研究院有限公司,北京 102209
4.上海捷能汽车技术有限公司,上海 201804
Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure
Zheng-feng ZHANG1,2(),Xiao-yu SONG3,Xiao-lei YUAN1(),Wen-juan CHEN2,Wei-dong ZHANG4
1.School of Automobile, Chang’an University, Xi’an 710064, China
2.Shaanxi Automobile Holding Group Co. , Ltd. , Xi’an 710042, China
3.Chinalco Material Application Research Institute Co. , Ltd. , Beijing 102209, China
4.Shanghai Jieneng Automobile Technology Co. , Ltd. , Shanghai 201804, China
 全文: PDF(3798 KB)   HTML
摘要:

轻量化是实现汽车产业向安全、节能、环保发展的一个重要途径。Al/CFRP(carbon fiber reinforced plastic,碳纤维增强复合材料)混合材料能够在提升轻量化效果的同时兼顾材料成本和结构耐撞性能。为探索方形截面Al/CFRP混合薄壁结构的最佳组合方式,首先,制备了Al方管、CFRP方管和Al/CFRP混合方管,并开展准静态压溃实验。然后,建立能够精确模拟Al/CFRP混合方管压溃响应的有限元模型。最后,将试验设计方法、代理模型技术、多目标优化算法和蒙特卡罗模拟技术相结合,对Al/CFRP混合方管分别进行多目标确定性与可靠性优化设计,并对效果较好的可靠性优化解进行仿真验证。准静态压溃实验结果表明,Al/CFRP混合方管具有优异的耐撞性能;优化结果表明,可靠性优化解的约束可靠度相比于确定性优化解提高了10.96%,大大降低了失效概率,具有更强的实用性。研究结果有望对Al/CFRP混合薄壁吸能构件的优化设计提供参考。

关键词: Al/CFRP(碳纤维增强复合材料)混合材料有限元分析可靠性优化设计    
Abstract:

Lightweight is an important way to make automobile industry develop towards safety, energy conservation and environmental protection. The Al/CFRP (carbon fiber reinforced plastic) hybrid material can improve the lightweight effect while taking into account the material cost and structural crashworthiness. In order to explore the best combination mode of Al/CFRP hybrid thin-walled structure with square cross section, firstly, Al square tubes, CFRP square tubes and Al/CFRP hybrid square tubes were prepared, and quasi-static crushing experiments were carried out. Then, the finite element model that could accurately simulate the crushing response of Al/CFRP hybrid square tube was established. Finally, the multi-objective certainty and reliability optimization design for the Al/CFRP hybrid square tube was carried out by combining experimental design method, agent model technique, multi-objective optimization algorithm and Monte Carlo simulation technology, and the reliability optimization solution with good effect was verified by simulation. The quasi-static crushing experiment results showed that the Al/CFRP hybrid square tube had excellent crashworthiness; the optimization results showed that the constraint reliability of the reliability optimization solution was 10.96% higher than that of the certainty optimization solution, which greatly reduced the failure probability and had stronger practicability. The research results are expected to provide a reference for the optimal design of Al/CFRP hybrid thin-walled energy-absorbing components.

Key words: Al/CFRP (carbon fiber reinforced plastic) hybrid material    finite element analysis    reliability    optimization design
收稿日期: 2022-05-17 出版日期: 2023-01-06
CLC:  TB 333  
基金资助: 陕西省科技重大专项(2020zdzx06-01-01);陕西省自然科学基金资助项目(2020JQ-368);长安大学中央高校基础研究基金资助项目(300102221201)
通讯作者: 袁晓磊     E-mail: zhangzf1979@yeah.net;yuanxiaolei@chd.edu.cn
作者简介: 张正峰(1979—),男,甘肃兰州人,高级工程师,硕士,从事汽车制造工艺设计与材料应用研究,E-mail: zhangzf1979@yeah.net,https://orcid.org/0000-0002-0991-4453
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张正峰
宋小雨
袁晓磊
陈文娟
张伟东

引用本文:

张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.

Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chinese Journal of Engineering Design, 2022, 29(6): 720-730.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.090        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I6/720

图1  Al/CFRP混合方管几何构型示意
试样Al管厚度/mmCFRP铺层数/层
Al方管1
CFRP方管8
Al/CFRP混合方管18
表1  各试样制备方案
图2  Al/CFRP混合方管制备流程
试样CFRP铺层数/层

外径

D/mm

长度

L/mm

厚度

T/mm

质量

m/g

Al方管40.0120.21.0046.396
CFRP方管840.5120.92.0350.601
Al/CFRP混合方管840.0120.13.0794.762
表2  各试样最终的几何尺寸参数
图3  轴向准静态压溃实验装置
图4  各试样的压溃过程及载荷—位移曲线
图5  基于ABAQUS/Explicit用户子程序(VUMAT)的CFRP层内失效实现流程
参数数值
tn0/MPa54
ts0/MPa70
tt0/MPa70
Gnc/MPa504
Gsc/MPa1 556
Gtc/MPa1 556
η2.284
表3  CFRP层间失效模型参数
参数数值
密度/(g/cm3)2.7
弹性模量/MPa69.87
泊松比0.37
屈服应力/MPa143.1
表4  AA6061-O铝合金材料参数
参数数值
E11/GPa57
E22/GPa57
v12v210.067
X11+/MPa679
X22+/MPa679
X11-/MPa512
X22-/MPa512
表5  CFRP的弹性参数和强度参数
参数数值
G12/MPa8 400
S0/MPa71
σ?y0/MPa115
r120.154
C3 080
a0.810 6
表6  CFRP的面内剪切参数
参数数值
Gf1+155
Gf1-255
Gf2+155
Gf2-255
表7  CFRP的面内损伤断裂参数 (kJ/m2)
图6  Al/CFRP混合方管轴向压溃有限元模型
图7  Al/CFRP混合方管轴向压溃的仿真与实验结果对比
对比项We/JWs/(J/g)Fmax/kNFave/kNλc
相对误差/%6.176.131.855.894.68
实验值3 444.7436.3566.8743.070.64
仿真值3 657.4738.5868.1145.610.67
表8  Al/CFRP混合方管耐撞性能指标的仿真与实验结果对比
样本点设计变量响应
TAl/mmθ1/(°)θ2/(°)θ3/(°)θ4/(°)Fmax/kNWs/(J/g)λc
11.47183571.3928.790.58
21.317331370.5631.740.63
30.63907451.6438.950.75
?????????
580.725023355.3338.890.74
591.11222221060.5938.180.81
601.5112404380.0931.740.59
表9  Al/CFRP混合方管的试验设计样本点及响应
耐撞性能指标代理模型构建方法精度评价指标
R2RMSE
FmaxRSM0.911 80.105 6
Kriging0.831 40.116 7
RBF0.753 20.249 6
WsRSM0.689 30.345 6
Kriging0.904 70.100 2
RBF0.758 30.255 2
λcRSM0.806 50.185 6
Kriging0.926 30.099 8
RBF0.796 50.213 5
表10  基于不同方法的Al/CFRP混合方管耐撞性能指标代理模型的精度对比
图8  Al/CFRP混合方管多目标确定性优化寻优过程
图9  基于不同优化算法的Al/CFRP混合方管多目标确定性优化的Pareto前沿最优解集对比
设计变量与耐撞性能指标数值
TAl/mm0.59
θ1/(°)5.37
θ2/(°)43.92
θ3/(°)22.46
θ4/(°)44.79
Fmax/kN38.24
Ws/(J/g)36.56
λc0.71
表11  Al/CFRP混合方管多目标确定性优化的最优解
设计变量概率分布相关系数初始值取值范围
上限下限
TAl/mm正态分布0.050.590.52
θ1/(°)正态分布0.055.37045
θ2/(°)正态分布0.0543.92045
θ3/(°)正态分布0.0522.46045
θ4/(°)正态分布0.0544.79045
表12  Al/CFRP混合方管多目标可靠性优化设计变量的初始值及其概率分布
图10  基于NSGA-Ⅱ的Al/CFRP混合方管多目标可靠性寻优过程
图11  Al/CFRP混合方管确定性与可靠性优化的Pareto前沿最优解集对比
设计变量、优化目标及约束确定性优化解可靠性优化解
TAl/mm0.590.79
θ1/(°)5.3716.62
θ2/(°)43.9225.70
θ3/(°)22.4620.99
θ4/(°)44.7937.97
Fmax/kN38.2442.11
Ws/(J/g)36.5635.75
λc0.710.76
可靠度/%87.3698.32
表13  Al/CFRP混合方管的确定性与可靠性优化最优解对比
图12  基于可靠性最优解的Al/CFRP混合方管压溃过程仿真结果
图13  基于可靠性最优解的Al/CFRP混合方管的变形模式和载荷—位移曲线仿真结果
对比项Fmax/kNWs /(J/g)λc
相对误差/%-13.472.523.79
代理模型预测结果42.1135.750.76
有限元仿真结果48.6734.870.79
表14  基于代理模型和有限元仿真的Al/CFRP混合方管耐撞性能指标对比
1 朱国华.金属/碳纤维混合材料薄壁结构耐撞性研究[D].长沙:湖南大学,2018:14-32. doi:10.1016/j.tws.2018.02.029
ZHU Guo-hua. On crashworthiness of metal/CFRP hybrid thin-walled structures[D]. Changsha: Hunan University, 2018: 14-32.
doi: 10.1016/j.tws.2018.02.029
2 SUN G, YU H, WANG Z, et al. Energy absorption mechanics and design optimization of CFRP/alumimun hybrid structures for tra+nsverse loading[J]. International Journal of Mechanical Sciences, 2019, 150: 767-783.
3 ZHU G, SUN G, LI G, et al. Modeling for CFRP structures subjected to quasi-static crushing[J]. Composite Structures, 2018, 184: 41-55.
4 SHI P, YU Q, HUANG R, et al. Crashworthy and performance-cost characteristics of aluminum-CFRP hybrid tubes under quasi-static axial loading[J]. Fibers & Polymers, 2019, 20(2): 384-397.
5 孙光永,李光耀,王建华,等.可靠性优化设计在汽车构件耐撞性中的应用[J].计算机辅助设计与图形学学报, 2007,19(10):1308-1314. doi:10.3321/j.issn:1004-132X.2007.04.027
SUN Guang-yong, LI Guang-yao, WANG Jian-hua, et al. The application of reliability optimization design to automotive structural crashworthiness[J]. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(10): 1308-1314.
doi: 10.3321/j.issn:1004-132X.2007.04.027
6 WANG Z, JIN X, LI Q, et al. On crashworthiness design of hybrid metal-composite structures[J]. International Journal of Mechanical Sciences, 2020, 171: 105380.
7 NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525.
8 MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface element[J]. Delamination Behaviour of Composites, 2008, 32(14): 367-386. doi:10.1177/002199839803201401
doi: 10.1177/002199839803201401
9 SOKOLINSKY V S. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(9): 1119-1126.
10 LIU Q, XING H, JU Y, et al. Quasi-static axial crushing and transverse bending of double hat shaped CFRP tubes [J]. Composite Structures, 2014, 117: 1-11.
11 ZHAO X, ZHU G, ZHOU C, et al. Crashworthiness analysis and design of composite tapered tubes under multiple load cases[J]. Composite Structures, 2019, 22: 110920.
12 ZHU G, SUN G, YU H, et al. Energy-absorbing of metal, composite and metal/composite hybrid structures under oblique crushing loading[J]. International Journal of Mechanical Sciences, 2018, 135: 458-483.
13 ZHANG Y, LU M, SUN G, et al. On functionally graded composite structures for crashworthiness[J]. Composite Structures, 2015, 132: 393-405.
14 ESNAOLA A, ELGUEZABAL B, AURREKOETXEA J, et al. Optimization of the semi-hexagonal geometry of a composite crush structure by finite element analysis[J]. Composites Part B: Engineering, 2016, 93: 56-66.
15 SUN G, CHEN D, HUO X, et al. Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels[J]. Composite Structures, 2018, 184: 110-124.
16 KANGMIN L, LIU Q, CUI Z, et al. Multiobjective optimization of perforated square CFRP tubes for crashworthiness[J]. Thin-Walled Structures, 2020, 149: 106628.
17 陈国栋.基于代理模型的多目标优化方法及其在车身设计中的应用[D].长沙:湖南大学,2012:12-40.
CHEN Guo-dong. Multi-objective optimization method based on metamodel and its applications in vehicle body design[D]. Changsha: Hunan University, 2012: 12-40.
18 SUN G, LI G, ZHOU S, et al. Crashworthiness design of vehicle by using multiobjective robust optimization[J]. Structural and Multidiplinary Optimization, 2011, 44(1): 99-110.
19 冯振宇,苏璇,赵彦强,等.含概率不确定性的复合材料吸能结构优化设计方法研究[J].振动与冲击,2019,38(11):101-109,139.
FENG Zhen-yu, SU Xuan, ZHAO Yan-qiang, et al. Optimization design method for energy-absorbing compositestructure with probabilistic uncertainty[J]. Journal of Vibration and Shock, 2019, 38(11): 101-109, 139.
20 鲍娣.某SUV白车身结构性能分析及可靠性优化设计[D].合肥:合肥工业大学,2019:38-68.
BAO Di. Structural performance analysis and reliability optimum design of a SUV body-in-white[D]. Hefei: Hefei University of Technology, 2019: 38-68.
[1] 谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
[2] 况雨春,钟辉,钟良春. 类圆弧线型螺杆马达的设计与研究[J]. 工程设计学报, 2023, 30(5): 640-649.
[3] 张涛,王开松,唐威,秦可成,刘阳,石雨豪,邹俊. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.
[4] 李江昊,肖文生,于文太,王鸿雁,刘顺庆,孙友福. 超深水打桩锤系统的可靠性分析与分配研究[J]. 工程设计学报, 2023, 30(4): 485-494.
[5] 戚其松,李成刚,董青,陈钰浩,徐航. 起重机生命周期载荷谱预测及基于疲劳寿命的结构优化设计[J]. 工程设计学报, 2023, 30(3): 380-389.
[6] 郭鸿杰,梁淑雅,陈文华,钟立强,陈哲文,颜佳辉. 线簧丝倾角对线簧孔式电连接器贮存寿命的影响研究[J]. 工程设计学报, 2023, 30(3): 390-398.
[7] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[8] 李三平,孙腾佳,袁龙强,吴立国. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报, 2022, 29(6): 684-694.
[9] 赵致勃,顾大强,李立新,张靖. 基于接触应力优化的摆线轮修形设计[J]. 工程设计学报, 2022, 29(6): 713-719.
[10] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[11] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[12] 陈振, 李涛, 薛晓伟, 周阳, 敬爽, 陈言. 基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J]. 工程设计学报, 2021, 28(4): 415-425.
[13] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[14] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.
[15] 张锦, 刘佩珊, 殷玉枫. Y形旋转超声波马达的设计与动态特性分析[J]. 工程设计学报, 2021, 28(2): 248-254.