Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (6): 731-738    DOI: 10.3785/j.issn.1006-754X.2022.00.087
保质设计     
基于电流解耦的表贴式永磁同步电机无源控制研究
樊峰宇(),周兆忠,赵颖,汪骏
衢州学院 机械工程学院,浙江 衢州 324000
Research on passive control of surface-mounted permanent magnet synchronous motor based on current decoupling
Feng-yu FAN(),Zhao-zhong ZHOU,Ying ZHAO,Jun WANG
College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
 全文: PDF(2244 KB)   HTML
摘要:

为了提高表贴式永磁同步电机的电流环频率响应能力和转速响应性能,针对其无源控制器设计过程中因d轴、q轴电流存在耦合而造成期望互联矩阵未知参数过多的问题,结合电压前馈解耦控制,提出了一种基于电流解耦的无源控制器新型设计方法。首先,根据能量平衡原理和电压前馈解耦控制,构建基于电流解耦的表贴式永磁同步电机端口受控耗散哈密顿系统(port control Hamilton system with dissipation, PCHD)模型。然后,通过互联和阻尼配置的无源控制(interconnection and damping assignment passivity-based control, IDA-PBC)方法,完成表贴式永磁同步电机无源控制器的设计,并在设计过程中引入了电压前馈解耦控制,消除了d、q轴电流的耦合关系,使期望互联矩阵的未知参数由3个减少为1个。最后,搭建表贴式永磁同步电机测试平台进行实验验证。实验结果表明,当表贴式永磁同步电机的电流环采用基于电流解耦的无源控制器时,q轴电流响应频率由小于250 Hz增大为大于333 Hz;额定转速下的转速响应时间由0.16 s减小为0.11 s,超调量由2.0%减小为0.6%,稳态误差由5.98 r/min减小为1.15 r/min。研究结果可为永磁同步电机的无源控制器设计提供新思路。

关键词: 无源控制电流解耦永磁同步电机电压前馈解耦端口受控耗散哈密顿系统(PCHD)互联和阻尼配置(IDA)    
Abstract:

In order to improve the current loop frequency response capability and speed response performance of the surface-mounted permanent magnet synchronous motor, and aiming at the problem of excessive unknown parameters of the expected interconnection matrix due to the coupling of d-axis and q-axis current in the passive controller design process, a new design method of passive controller based on current decoupling was proposed by combining with voltage feedforward decoupling control. Firstly, according to the energy balance principle and voltage feedforward decoupling control, the port control Hamilton system with dissipation (PCHD) model of surface-mounted permanent magnet synchronous motor based on current decoupling was constructed. Then, the passive controller of surface-mounted permanent magnet synchronous motor was designed by the interconnection and damping assignment passive-based control (IDA-PBC) method, and the voltage feedforward decoupling control was introduced in the design process to eliminate the coupling between d-axis and q-axis current, so that the unknown parameters of the expected interconnection matrix were reduced from 3 to 1. Finally, the test platform of surface-mounted permanent magnet synchronous motor was built for experimental verification. The experimental results showed that when the passive controller based on current decoupling was used in the current loop of surface-mounted permanent magnet synchronous motor, the q-axis current response frequency increased from less than 250 Hz to more than 333 Hz; the speed response time at rated speed decreased from 0.16 s to 0.11 s, the overshoot decreased from 2.0% to 0.6%, and the steady-state error decreased from 5.98 r/min to 1.15 r/min. The research results can provide a new idea for the passive controller design of permanent magnet synchronous motor.

Key words: passive control    current decoupling    permanent magnet synchronous motor    voltage feedforward decoupling    port control Hamilton system with dissipation (PCHD)    interconnection and damping assignment (IDA)
收稿日期: 2022-04-22 出版日期: 2023-01-06
CLC:  TM 341  
基金资助: 国家自然科学基金资助项目(62101206);浙江省重点研发计划项目(2020C02SA903678);浙江省教育厅科研资助项目(Y202147271)
作者简介: 樊峰宇(1993—),男,山西吕梁人,助教,硕士,从事永磁同步电机及其控制研究,E-mail: 937235846@qq.com,https://orcid.org/0000-0003-1836-8113
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
樊峰宇
周兆忠
赵颖
汪骏

引用本文:

樊峰宇,周兆忠,赵颖,汪骏. 基于电流解耦的表贴式永磁同步电机无源控制研究[J]. 工程设计学报, 2022, 29(6): 731-738.

Feng-yu FAN,Zhao-zhong ZHOU,Ying ZHAO,Jun WANG. Research on passive control of surface-mounted permanent magnet synchronous motor based on current decoupling[J]. Chinese Journal of Engineering Design, 2022, 29(6): 731-738.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.087        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I6/731

图1  表贴式永磁同步电机d轴、q轴电流的耦合关系
图2  表贴式永磁同步电机测试平台
参数数值
额定电压/V24
额定电流/A24.4
额定转速/(r/min)1 000
极对数4
定子电阻/Ω0.045
表1  表贴式永磁同步电机基本参数
图3  频率为100 Hz时q轴电流响应曲线对比
图4  频率为200 Hz时q轴电流响应曲线对比
图5  频率为250 Hz时q轴电流响应曲线对比
图6  频率为333 Hz时q轴电流响应曲线对比
频率/Hz采用无源控制器采用PI控制器
幅值衰减相位滞后/(°)幅值衰减相位滞后/(°)
1000.96821.60.91543.2
2000.94536.10.80057.6
2500.94245.20.77790.2
3331.01060.10.70096.3
表2  不同频率下 q 轴电流响应的幅值衰减和相位滞后
图7  给定转速为500 r/min时的转速响应曲线对比
图8  给定转速为1 000 r/min时的转速响应曲线对比
动态特性给定转速为500 r/min给定转速为1 000 r/min
采用无源控制器采用PI控制器采用无源控制器采用PI控制器
响应时间/s0.060.240.110.16
超调量/%1.42.10.62.0
稳态误差/(r/min)0.573.321.155.98
负载突变时转速变化量/(r/min)12.840.242.359.8
负载突变后转速恢复时间/s0.130.180.170.20
表3  不同给定转速下转速响应的动态特性对比
1 吴建华,吴航.永磁同步电机磁链修正无位置传感器控制[J].电机与控制学报,2021,25(4):16-22,31.
WU Jian-hua, WU Hang. Permanent magnet synchronous motor position sensorless control with flux linkage correction[J]. Electric Machines and Control, 2021, 25(4): 16-22, 31.
2 王要强,朱亚昌,冯玉涛,等.永磁同步电机新型趋近律滑模控制策略[J].电力自动化设备,2021,41(1):192-198.
WANG Yao-qiang, ZHU Ya-chang, FENG Yu-tao, et al. New reaching law sliding mode control strategy for permanent magnet synchronous motor[J]. Electric Power Automation Equipment, 2021, 41(1): 192-198.
3 裘君.基于耗散哈密顿系统的永磁同步电机控制研究[D].杭州:浙江大学,2009:1-3.
QIU Jun. Research on PMSM control with dissipation Hamilton system[D]. Hangzhou: Zhejiang University, 2009: 1-3.
4 吕成兴,于海生,周忠海,等.端口受控哈密顿方法的电力双推进无人船航向航速控制[J].海洋科学,2018,42(1):134-138. doi:10.11759/hykx20171011023
Cheng-xing LÜ, YU Hai-sheng, ZHOU Zhong-hai, et al. Speed and heading control of unmanned surface vehicles system based on port-controlled Hamiltonian (PCH) control method[J]. Marine Sciences, 2018, 42(1): 134-138.
doi: 10.11759/hykx20171011023
5 付晓阳,滕青芳,罗维多,等.基于ESO的PMSG风力发电系统无源自抗扰控制[J].兰州交通大学学报,2018,37(4):62-70. doi:10.3969/j.issn.1001-4373.2018.04.011
FU Xiao-yang, TENG Qing-fang, LUO Wei-duo, et al. Passivity-based active disturbance rejection control of PMSG wind power generation system based on extended state observer[J]. Journal of Lanzhou Jiaotong University, 2018, 37(4): 62-70.
doi: 10.3969/j.issn.1001-4373.2018.04.011
6 MOCANU R, ONEA A. Robust control of permanent magnet synchronous machine based on passivity theory[J]. Asian Journal of Control, 2018, 20(5): 2034-2041.
7 何洁,滕青芳,马喜平,等.基于负载转矩观测器的PMSM鲁棒无源控制[J].兰州交通大学学报,2018,37(1):73-79. doi:10.3969/j.issn.1001-4373.2018.01.012
HE Jie, TENG Qingfang, MA Xi-ping, et al. Robust passivity-based control of PMSM based on load torque observer[J]. Journal of Lanzhou Jiaotong University, 2018, 37(1): 73-79.
doi: 10.3969/j.issn.1001-4373.2018.01.012
8 任丽娜,双美佳,刘福才.基于EUKF模型的PMSG系统无速度传感器控制[J].电气传动,2019,49(8):80-85.
REN Li-na, SHUANG Mei-jia, LIU Fu-cai. Sensorless speed control of PMSG based on EUKF[J]. Electric Drive, 2019, 49(8): 80-85.
9 程启明,魏霖,程尹曼,等.基于准Z源矩阵变换器的永磁同步电机无源控制驱动系统[J].中国电机工程学报,2019,39(22):6746-6756.
CHENG Qi-ming, WEI Lin, CHENG Yin-man, et al. Permanent magnet synchronous motor passivity-based control drive system based on quasi-Z source matrix converter[J]. Proceedings of the CSEE, 2019, 39(22): 6746-6756.
10 LIU An-xing, YU Hai-sheng. Smooth-switching control of robot-based permanent-magnet synchronous motors via port-controlled Hamiltonian and feedback linearization[J]. Energies, 2020, 13(21): 5731.
11 李红斌,王双喜,张晶晶,等.基于端口耗散哈密顿系统的电机控制方法[J].沈阳工业大学学报,2020,42(6):607-612. doi:10.7688/j.issn.1000-1646.2020.06.02
LI Hong-bin, WANG Shuang-xi, ZHANG Jing-jing, et al. Motor control method based on port dissipative Hamiltonian system[J]. Journal of Shenyang University of Technology, 2020, 42(6): 607-612.
doi: 10.7688/j.issn.1000-1646.2020.06.02
12 刘佳雯,于海生.PMSM反步积分滑模与PCH平滑切换控制[J].电气传动,2020,50(6):72-76.
LIU Jia-wen, YU Hai-sheng. PMSM control system based on backstepping integral sliding mode and PCH[J]. Electric Drive, 2020, 50(6): 72-76.
13 侯利民,申鹤松,李蕴倬,等.永磁同步电机调速系统的非线性鲁棒滑模控制[J].电机与控制学报,2020,24(6):143-152.
HOU Li-min, SHEN He-song, LI Yun-zhuo, et al. Nonlinear robust sliding mode control of permanent magnet synchronous motor speed regulation system[J]. Electric Machines and Control, 2020, 24(6): 143-152.
14 金宁治,李光一,刘金凤,等.内置式永磁同步电机自抗扰‒无源控制策略[J].电机与控制学报,2020,24(12):35-42.
JIN Ning-zhi, LI Guang-yi, LIU Jin-feng, et al. IPMSM control system based on ADRC-PBC strategy[J]. Electric Machines and Control, 2020, 24(12): 35-42.
15 袁宏哲.基于无源性理论和自抗扰的机械臂柔性关节伺服控制[D].北京:北京交通大学,2021:32-38.
YUAN Hong-zhe. Servo control of manipulator flexible joint based on passivity theory and auto disturbance rejection[D]. Beijing: Beijing Jiaotong University, 2021: 32-38.
16 BELKHIER Y, ACHOUR A, BURES M, et al. Interconnection and damping assignment passivity-based non-linear observer control for efficiency maximization of permanent magnet synchronous motor[J]. Energy Reports, 2022, 8: 1350-1361.
17 AKRAD A, HILAIRET M, ORTEGA R, et al. Interconnection and damping assignment approach for reliable PM synchronous motor control[C]//IET Colloquium on Reliability of Electromagnetic Systems, Paris, May 24-25, 2007.
18 ORTEGA R, VAN DER SCHAFT A, MASCHKE B, et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems[J]. Automatica, 2002, 38(4): 585-596.
19 彭明祥.基于无源控制方法的哈密顿系统同步控制[D].哈尔滨:哈尔滨工业大学,2011:11-13.
PENG Ming-xiang. Synchronization control of Hamiltonian system based on passivity control method[D]. Harbin: Harbin Institute of Technology, 2011: 11-13.
20 司梦.永磁同步电机电流环偏差解耦控制策略研究[D].西安:西安理工大学,2019:6-7.
SI Meng. Research on current loop deviation decoupling control strategy of permanent magnet synchronous motor[D]. Xi’an: Xi’an University of Technology, 2019: 6-7.
[1] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[2] 吴国沛, 余银犬, 涂文兵. 永磁同步电机故障诊断研究综述[J]. 工程设计学报, 2021, 28(5): 548-558.
[3] 韩丁, 丁俊. 基于TLESO/HLESO/RLESO的PMSM调速系统研究[J]. 工程设计学报, 2018, 25(1): 94-102.
[4] 张兵, 唐猛, 廖海洲. 基于负载观测的PMSM滑模抗扰动自适应控制[J]. 工程设计学报, 2013, 20(5): 427-433.