Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 127-135    DOI: 10.3785/j.issn.1006-754X.2023.00.021
设计基础理论与方法     
直写成形制备FGMs零件时延迟信息的数字化预测方法
王世杰(),王龙,马硕,杨杰,马聪,段国林()
河北工业大学 机械工程学院,天津 300401
Digital prediction method for delay information for preparing FGMs parts by direct write forming
Shijie WANG(),Long WANG,Shuo MA,Jie YANG,Cong MA,Guolin DUAN()
College of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
 全文: PDF(3630 KB)   HTML
摘要:

采用直写成形工艺制备FGMs(functionally graded materials,功能梯度材料)零件时存在材料配比变化延迟的现象,导致所制备零件的材料配比与设计目标的吻合度较差,材料性能的未知性增大,从而存在潜在的使用风险。为了准确获取在不同工艺参数下材料配比的延迟信息,构建了一种基于计算流体力学的神经网络预测模型。基于RNG k-ε模型,采用优化后的贝叶斯正则化神经网络模型来预测不同工艺参数所对应的延迟信息,即在不同的材料初始配比、目标配比、螺杆转速、双挤出柱塞进给速率和下预测交付延迟时间和整体延迟时间,其预测精度分别可以达到94.87%与92.74%。采用数字图像处理方法对在不同工艺参数下打印的FGMs试样进行处理,结果表明实际打印试样的材料梯度变化曲线与仿真结果有较高的吻合度,验证了以计算流体力学为分析框架的仿真结果的准确性以及所构建的优化神经网络模型对延迟信息预测的可行性与可靠性。研究结果为未来将数字化预测方法融入FGMs零件本体制备的工艺提供了参考,可以促进传统制造模式向数字化制造模式转变,最终实现FGMs零件的精准制造。

关键词: 功能梯度材料延迟信息优化神经网络数字化预测    
Abstract:

When using direct ink writing technology to prepare FGMs (functionally graded materials) parts, there is a delay in the change of material ratio, which leads to poor consistency between the material ratio of the prepared parts and the design goals, and increases the uncertainty of material properties, resulting in potential use risks. In order to accurately learn the delay information of material ratio under different process parameters, a neural network prediction model based on computational fluid dynamics was constructed. Based on RNG k-ε model, an optimized Bayesian regularized neural network model was used to predict the delay information corresponding to different process parameters, namely, the delivery delay time and global delay time were predicted under different initial ratio and target ratio of materials, screw rotation speed, sum of double extruded plunger feed rates. The prediction accuracy could reach 94.87% and 92.74%, respectively. Using digital image processing methods to process FGMs samples printed under different process parameters, the results showed that the material gradient change curve of the actual printed samples had a high degree of coincidence with the simulation results, verifying the accuracy of the simulation results based on computational fluid dynamics as the analysis framework, as well as the feasibility and reliability of the constructed optimized neural network model for predicting delay information. The research results provide a reference for integrating digital prediction methods into FGMs part body preparation processes in the future, and can promote the transformation of traditional manufacturing models to digital manufacturing models, ultimately achieving the accurate manufacturing of FGMs parts.

Key words: functionally gradient materials    delay information    optimize neural networks    digital prediction
收稿日期: 2022-07-07 出版日期: 2023-05-06
CLC:  TB 34  
基金资助: 中央引导地方科技发展资金项目(216Z1804G)
通讯作者: 段国林     E-mail: 554720511@qq.com;glduan@hebut.cn
作者简介: 王世杰(1995—),男,河北石家庄人,博士生,从事数字化设计与制造研究,E-mail: 554720511@qq.com, https://orcid.org/0000-0002-2326-2017
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王世杰
王龙
马硕
杨杰
马聪
段国林

引用本文:

王世杰,王龙,马硕,杨杰,马聪,段国林. 直写成形制备FGMs零件时延迟信息的数字化预测方法[J]. 工程设计学报, 2023, 30(2): 127-135.

Shijie WANG,Long WANG,Shuo MA,Jie YANG,Cong MA,Guolin DUAN. Digital prediction method for delay information for preparing FGMs parts by direct write forming[J]. Chinese Journal of Engineering Design, 2023, 30(2): 127-135.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.021        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/127

图1  主动混料装置
图2  混料腔的仿真模型及其网格划分
参数量值参数量值
螺杆长度60 mm螺杆转速15~60 r/min
螺旋角19°双挤出柱塞进给速率和0.4~1.4mm/s
螺棱宽度1 mm单挤入口直径3.5 mm
螺槽宽度7 mm进给物料流量3.8~13.3 mm3/s
螺杆内径4~6.5 mm挤出针头直径0.48 mm
螺杆外径8 mm混料腔容积2 284.7 mm3
表1  主动混料装置的工作参数
图3  材料A体积分数变化的仿真结果
图4  材料A累积停留时间分布函数
图5  材料A停留时间分布密度函数
图6  ANN预测模型
图7  不同训练算法下模型的均方误差
图8  不同神经元数量下BR模型的均方误差
图9  模型的均方误差随训练次数的变化曲线
图10  交付延迟时间和整体延迟时间预测结果与仿真结果的对比
图11  FGMs打印样机
图12  FGMs打印试样
图13  打印试样中材料A体积分数的时序变化曲线
试样序号

交付延迟

时间/s

整体延迟

时间/s

延迟

距离/mm

误差/

%

CFD仿真

ANN

仿真

CFD

仿真

ANN

仿真

CFD

仿真

ANN

预测

1172144.67586608.0917581824.33.7
2200236.72590625.0717701875.25.9
表2  制备FGMs试样的延迟信息
1 MATULA I, DERCZ G, BARCZYK J. Titanium/zirconium functionally graded materials with porosity gradients for potential biomedical applications[J]. Materials Science and Technology, 2020, 36(9): 972-977.
2 MARIN L. Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials [J]. International Journal of Solids and Structures, 2005, 42(15): 4338-4351.
3 UDUPA G, RAO S S, GANGADHARAN K V. Future applications of carbon nanotube reinforced functionally graded composite materials[C]//Proceedings of the IEEE-International Conference on Advances in Engineering, Science and Management, Nagapattinam India, Mar. 30-31, 2012: 399-404.
4 GUPTA A, TALHA M. Recent development in modeling and analysis of functionally graded materials and structures[J]. Progress in Aerospace Sciences, 2015, 79: 1-14.
5 MURPHY C, KOLAN K, LI W, et al. 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering[J]. International Journal of Bioprinting, 2017, 3: 1-11.
6 LI V C-F, KUANG X, HAMEL C M, et al. Cellulose nanocrystals support material for 3D printing complexly shaped structures via multi-materials-multi-methods printing[J]. Additive Manufacturing, 2019, 28: 14-22.
7 SAM M, RADHIKA N. Development of functionally graded Cu-Sn-Ni/Al2O3 composite for bearing applications and investigation of its mechanical and wear behavior[J]. Particulate Science and Technology, 2019, 37(2): 220-231.
8 RADHIKA N, RAGHU R. Synthesis of functionally graded aluminium composite and investigation on its abrasion wear behaviour[J]. Journal of Engineering Science and Technology, 2017, 12: 1386-1398.
9 EL-GALY I M, AHMED M H, BASSIOUNY B I. Characterization of functionally graded Al-SiCp metal matrix composites manufactured by centrifugal casting[J]. Alexandria Engineering Journal, 2017, 56(4): 371-381.
10 XING H, ZOU B, LI S, et al. Study on surface quality, precision and mechanical properties of 3D printed ZrO2 ceramic components by laser scanning stereolithography[J]. Ceramics International, 2017, 43(18): 16340-16347.
11 YAN S, WU D, NIU F, et al. Al2O3-ZrO2 eutectic ceramic via ultrasonic-assisted laser engineered net shaping[J]. Ceramics International, 2017, 43(17): 15905-15910.
12 DU W, REN X, MA C, et al. Ceramic binder jetting additive manufacturing: Particle coating for increasing powder sinterability and part strength[J]. Materials Letters, 2019, 234: 327-330.
13 REVELO C F, COLORADO H A. 3D printing of kaolinite clay ceramics using the direct ink writing (DIW) technique[J]. Ceramics International, 2018, 44(5): 5673-5682.
14 GHAZANFARI A, LI W, LEU M C, et al. A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying[J]. Additive Manufacturing, 2017, 15: 102-112.
15 LEU M C, DEUSER B K, TANG L, et al. Freeze-form extrusion fabrication of functionally graded materials[J]. Cirp Annals-Manufacturing Technology, 2012, 61(1): 223-226.
16 LI W, ARMANI A, MARTIN A, et al. Extrusion-based additive manufacturing of functionally graded ceramics[J]. Journal of the European Ceramic Society, 2021, 41(3): 2049-2057.
17 BRACKETT J, YAN Y, CAUTHEN D, et al. Characterizing material transitions in large-scale additive manufacturing[J]. Additive Manufacturing, 2021, 38: 101750.
18 JING L, TIAN Y. Self-supervised visual feature learning with deep neural networks: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4037-4058.
19 YU J, WU B. The inverse of material properties of functionally graded pipes using the dispersion of guided waves and an artificial neural network[J]. NDT & E International, 2009, 42: 452-458.
20 YU J. Determination of material properties of functionally graded hollow cylinders using artificial neural network[C]//2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, Apr. 11-12, 2009: 202-205.
21 YU C-L, YANG H, ZHAO D C, et al. Prediction of the sintering shrinkage of glass-alumina functionally graded materials by a BP artificial neural network[J]. Science of Sintering, 2009, 41: 257-266.
22 KARSH P K, MUKHOPADHYAY T, DEY S. Stochastic dynamic analysis of twisted functionally graded plates[J]. Composites Part B: Engineering, 2018, 147: 259-278.
23 YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence. I. Basic theory[J]. Journal of Scientific Computing, 1986, 1(1): 3-51.
24 WONG M L, LEE S Y, LEUNG K S. Data mining of Bayesian networks using cooperative coevolution [J]. Decision Support Systems, 2004, 38(3): 451-472.
No related articles found!