Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (4): 476-484    DOI: 10.3785/j.issn.1006-754X.2023.00.048
机械仿生设计     
基于河狸门齿的锤片式粉碎机锤片仿生设计
王金栋(),谢宇鸿(),陈燚,吴展扬
西南交通大学 机械工程学院,四川 成都 610031
Biomimetic design of hammer pieces for hammer mill based on beaver incisors
Jindong WANG(),Yuhong XIE(),Yi CHEN,Zhanyang WU
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
 全文: PDF(2803 KB)   HTML
摘要:

为提高锤片式粉碎机的粉碎效率并降低其能耗,以河狸门齿为仿生原型,设计了一种新型仿生锤片。首先,对河狸门齿进行逆向重构,获取了准确的河狸门齿三维模型。然后,对河狸门齿的特征结构进行确定、提取与表征,并将提取的仿生耦元用于锤片齿面设计。最后,通过锤片-物料粉碎仿真计算,以物料断裂时长和所受最大应力作为仿生锤片性能的评价指标,基于响应面法构建了仿生锤片的结构参数与性能指标的响应面代理模型,并采用Design-Expert软件对最优结构参数组合进行了求解。物料粉碎仿真结果表明,相较于普通锤片,仿生锤片造成的物料断口较大,与物料正面碰撞时产生的最大应力更大,且物料断裂所需时间更短。物料粉碎实验结果表明,更换仿生锤片后粉碎机的生产效率更高,过粉碎现象有所改善,说明仿生锤片的使役性能优于普通锤片。研究结果可为饲料加工用粉碎机锤片的设计提供参考。

关键词: 河狸门齿锤片仿生设计优化    
Abstract:

In order to improve the crushing efficiency and reduce energy consumption of the hammer mill, a new type of biomimetic hammer piece was designed with beaver incisors as biomimetic prototype. Firstly, the reverse reconstruction for beaver incisors was carried out to obtain an accurate three-dimensional model of beaver incisors. Then, the characteristic structure of beaver incisors was determined, extracted and characterized, and the obtained biomimetic coupling element was used for the tooth surface design of hammer pieces. Finally, through the hammer piece?material crushing simulation calculation, taking the fracture duration and maximum stress of material as the evaluation indicators of the biomimetic hammer piece performance, the response surface surrogate model of the structural parameters and performance indicators of the biomimetic hammer piece was constructed by the response surface method, and the optimal combination of structural parameters was solved by the Design-Expert software. The simulation results of material crushing showed that compared to ordinary hammer pieces, biomimetic hammer pieces caused larger material fractures, generated greater maximum stress when colliding with the material head-on, and required shorter time for material fracture. The experimental results of material crushing showed that after replacing the biomimetic hammer pieces, the production efficiency of the mill was higher and over crushing was improved, indicating that the service performance of the biomimetic hammer piece was better than that of the ordinary hammer piece. The research results can provide reference for the design of hammer pieces of mills for feed processing.

Key words: beaver incisor    hammer piece    biomimetic design    optimization
收稿日期: 2022-09-29 出版日期: 2023-09-04
CLC:  TH 122  
基金资助: 四川省科技计划资助项目(2021YFG0194);西南交通大学学科交叉专项(2682021ZTPY067)
通讯作者: 谢宇鸿     E-mail: wangjindong@swjtu.edu.cn;2331516202@qq.com
作者简介: 王金栋(1982—),男,河南平顶山人,副教授,硕士生导师,博士,从事精密测量与仿生设计研究,E-mail: wangjindong@swjtu.edu.cn,https://orcid.org/0000-0001-6785-3831
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王金栋
谢宇鸿
陈燚
吴展扬

引用本文:

王金栋,谢宇鸿,陈燚,吴展扬. 基于河狸门齿的锤片式粉碎机锤片仿生设计[J]. 工程设计学报, 2023, 30(4): 476-484.

Jindong WANG,Yuhong XIE,Yi CHEN,Zhanyang WU. Biomimetic design of hammer pieces for hammer mill based on beaver incisors[J]. Chinese Journal of Engineering Design, 2023, 30(4): 476-484.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.048        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/476

图1  河狸门齿
图2  河狸颅骨和河狸门齿的点云模型
图3  光滑处理前后的河狸门齿多边形模型
图4  河狸门齿三维模型
图5  河狸门齿末端齿廓曲线提取
图6  河狸门齿末端齿廓曲线拟合结果
图7  仿生锤片结构示意
参数量值
密度600 kg/m3
泊松比0.3
弹性模量600 MPa
剪切模量45 MPa
摩擦系数0.3
表1  小麦秸秆材料参数
序号锤片结构参数/mm响应指标
齿间距齿高厚度断裂时长/帧最大应力/MPa
11.02.005161137
21.52.004173126
31.01.756161138
41.51.755162148
52.01.756158125
62.01.754184150
72.01.505166141
81.52.006157133
91.51.504166123
101.51.755162148
111.51.506155133
121.01.505164150
132.02.005168154
141.51.755162148
151.01.754166125
161.51.755162148
171.51.755162148
表2  仿生锤片结构参数响应面优化试验方案及结果
响应指标决定系数R2校正决定系数Radj2信噪比
r10.973 30.931 921.764
r20.938 50.859 510.941
表3  响应指标回归模型的拟合精度
参数数值
齿间距1.00
齿高1.52
厚度5.35
表4  仿生锤片的最优结构参数组合 (mm)
图8  最优仿生锤片结构示意
图9  不同锤片与物料正面碰撞仿真结果
图10  不同锤片与物料侧面碰撞仿真结果
图11  与不同锤片碰撞过程中物料所受的应力
图12  420双斗型锤片式粉碎机及不同锤片
性能指标仿生锤片普通锤片
粉碎时长/s118.00140.00
生产率/(kg·h-1)76.2760.98
表5  不同锤片的粉碎性能
图13  粉碎后物料粒径分布结果
1 曹丽英,李帅波,李春东,等.锤片式饲料粉碎机的研究发展现状[J].饲料工业,2021,42(3):31-36.
CAO L Y, LI S B, LI C D, et al. The research and development status of hammer feed mill[J]. Feed Industry, 2021, 42(3): 31-36.
2 徐伟,曹春平,孙宇.锤片式粉碎机锤片结构参数优化设计[J].农机化研究,2021,43(1):27-33. doi:10.3969/j.issn.1003-188X.2021.01.007
XU W, CAO C P, SUN Y. Optimization design of hammer structure parameters of hammer mill[J]. Journal of Agricultural Mechanization Research, 2021, 43(1): 27-33.
doi: 10.3969/j.issn.1003-188X.2021.01.007
3 郭亚兵,任连志,路宗尧,等.基于对数螺线方程的秸秆粉碎机锤片设计及应用参数确定[J].甘肃农业科技,2015(5):34-37. doi:10.3969/j.issn.1001-1463.2015.05.010
GUO Y B, REN L Z, LU Z Y, et al. Design and application parameters of straw crusher hummer based on logarithmic spiral equation[J]. Gansu Agricultural Science and Technology, 2015(5): 34-37.
doi: 10.3969/j.issn.1001-1463.2015.05.010
4 李更强,郭新荣.锤片式粉碎机锤片的设计与研究[J].农业技术与装备,2012(5):38-40. doi:10.3969/j.issn.1673-887X.2012.03.018
LI G Q, GUO X R. Design and research of hammer blade of hammer mill[J]. Agricultural Technology & Equipment, 2012(5): 38-40.
doi: 10.3969/j.issn.1673-887X.2012.03.018
5 陈培军,邓援超.基于TRIZ原理的粉碎机锤片结构问题解决方案[J].湖北工业大学学报,2012,27(2):89-91. doi:10.3969/j.issn.1003-4684.2012.02.024
CHEN P J, DENG Y C. On the sheet structure of hammer mill using TRIZ theory[J]. Journal of Hubei University of Technology, 2012, 27(2): 89-91.
doi: 10.3969/j.issn.1003-4684.2012.02.024
6 苏从毅,王永昌,俞信国,等.开刃锤片是提高粉碎机效率的新途径[J].饲料工业,2016,37(1):12-18.
SU C Y, WANG Y C, YU X G, et al. Groove-welding on hammers will enhance crusher's working efficiency[J]. Feed Industry, 2016, 37(1): 12-18.
7 谌春炜,付敏.枝桠材粉碎机锤片创新设计[J].森林工程,2012,28(2):47-49,78. doi:10.3969/j.issn.1001-005X.2012.02.012
CHEN C W, FU M. Innovative design of grinder pulverization hammer for branch[J]. Forest Engineering, 2012, 28(2): 47-49, 78.
doi: 10.3969/j.issn.1001-005X.2012.02.012
8 YANCEY N, WRIGHT C T, WESTOVER T L. Optimizing hammer mill performance through screen selection and hammer design[J]. Biofuels, 2013, 4(1): 85-94.
9 DORODOV P V, KASATKIN V V, PETROV V A, et al. Improving the reliability of the hammer grain crusher by optimal design of the paddle wheel[J]. IOP Conference Series: Earth and Environmental Science, 2022, 981: 042039.
10 BOCHAT A, WESOLOWSKI L, ZASTEMPOWSKI M. A comparative study of new and traditional designs of a hammer mill[J]. Transactions of the ASABE, 2015, 58(3): 585-596.
11 DICKINSON M H. Bionics: biological insight into mechanical design[J]. PNAS, 1999, 96(25): 14208-14209.
12 JUNIOR W K, GUANABARA A S. Methodology for product design based on the study of bionics[J]. Materials & Design, 2005, 26(2): 149-155.
13 QUINN S, GAUGHRAN W. Bionics—an inspiration for intelligent manufacturing and engineering[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(6): 616-621.
14 童晗笑,权威,任新宇.仿生设计方法在现代产品设计中的应用现状研究[J].艺海,2020(3):70-71.
TONG H X, QUAN W, REN X Y. Research on the application status of bionic design method in modern product design[J]. Yihai, 2020(3): 70-71.
15 石峰,郑赟,马用超.气候适应性建筑表皮的仿生设计研究[J].南方建筑,2023(2):22-32. doi:10.3969/j.issn.1000-0232.2023.02.003
SHI F, ZHENG Y, MA Y C. A study of the bionic design of a climate-adaptability building surface[J]. South Architecture, 2023(2): 22-32.
doi: 10.3969/j.issn.1000-0232.2023.02.003
16 秦施埼,任泽春,王辰希,等.基于3D打印的木材细胞壁仿生设计[J].复合材料学报,2023,40(2):1085-1095.
QIN S Q, REN Z C, WANG C X, et al. Bionic design of wood cell wall based on 3D printing[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1085-1095.
17 RUAN Y Y, KONSTANTINOV A S, SHI G Y, et al. The jumping mechanism of flea beetles (Coleoptera, Chrysomelidae, Alticini), its application to bionics and preliminary design for a robotic jumping leg[J]. ZooKeys, 2020, 915: 87.
18 杨立宁,郑东昊,王立新,等.基于蜻蜓翅脉结构的连续碳纤维增强树脂基复合材料仿生设计与增材制造[J].化工进展,2022,41(11):5961-5967.
YANG L N, ZHENG D H, WANG L X, et al. Bionic design and additive manufacturing of continuous carbon fiber reinforced resin matrix composites with dragonfly wing venation structure[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5961-5967.
19 陈宇航,陈文家,郭成东,等.半规管积水膨大仿生设计及生物力学特性研究[J].实验技术与管理,2022,39(12):75-79,92.
CHEN Y H, CHEN W J, GUO C D, et al. Research on biomimetic design and biomechanical properties of semicircular canal hydrops swelling[J]. Experimental Technology and Management, 2022, 39(12): 75-79, 92.
20 AZOCAR A F, MOONEY L M, DUVAL J F, et al. Design and clinical implementation of an open-source bionic leg[J]. Nature Biomedical Engineering, 2020, 4(10): 941-953.
21 FUKUDA T. Cyborg and bionic systems: signposting the future[J]. Cyborg and Bionic Systems, 2020, 2020: 1310389.
22 谢峰,沈维蕾,张晔.河狸门牙几何特征的提取及其生物力学性能分析[J].中国机械工程,2011,22(10):1149-1153.
XIE F, SHEN W L, ZHANG Y. Gaining of geometric characteristics for incisor teeth and its analysis of biologic mechanics property[J]. China Mechanical Engineering, 2011, 22(10): 1149-1153.
[1] 张小强,鲁碧为,刘家琴,吴玉程. 聚变堆偏滤器拓扑优化设计与稳态热分析[J]. 工程设计学报, 2023, 30(5): 601-607.
[2] 王柏村,朱凯凌,鲍劲松,王峰,谢海波,杨华勇. 基于数字底座的涂装车身缓存区智能设计与调度优化[J]. 工程设计学报, 2023, 30(4): 399-408.
[3] 郭志敏,戴海曙,翟江,洪昊岑,王柏村,谢海波,杨华勇. 基于FMI的轴向柱塞泵分布式联合仿真与动态优化[J]. 工程设计学报, 2023, 30(4): 495-502.
[4] 窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.
[5] 何育民,韩莹,周晶. 基于改进果蝇优化算法的塔机自适应滑模控制研究[J]. 工程设计学报, 2023, 30(3): 271-280.
[6] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[7] 郑小飞,黄镇海,马小龙,王建新,王斌锐. 基于SIMP方法的爬杆机器人结构优化与分析[J]. 工程设计学报, 2023, 30(3): 342-352.
[8] 戚其松,李成刚,董青,陈钰浩,徐航. 起重机生命周期载荷谱预测及基于疲劳寿命的结构优化设计[J]. 工程设计学报, 2023, 30(3): 380-389.
[9] 王世杰,王龙,马硕,杨杰,马聪,段国林. 直写成形制备FGMs零件时延迟信息的数字化预测方法[J]. 工程设计学报, 2023, 30(2): 127-135.
[10] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[11] 樊俊良,肖黎,罗月婷,陈刚,瞿小林,唐毅,龚恒翔. 雾化辅助CVD腔体的优化设计与实现[J]. 工程设计学报, 2023, 30(2): 182-188.
[12] 张鹏程,牛建业,刘承磊,宋井科,王立鹏,张建军. 牵引式下肢康复机器人机构参数优化及轨迹规划[J]. 工程设计学报, 2022, 29(6): 695-704.
[13] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[14] 刘江,肖正明,张龙隆,刘卫标. 考虑摆线轮磨损的RV减速器传动精度可靠性分析与参数优化[J]. 工程设计学报, 2022, 29(6): 739-747.
[15] 张文豪,班传文,李松梅. 基于离散元法的双组份复合涂料搅拌螺杆参数优化[J]. 工程设计学报, 2022, 29(5): 547-554.