Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (2): 162-167    DOI: 10.3785/j.issn.1006-754X.2017.02.006
设计理论与方法学     
旋转超声磨削钛合金有限元仿真与试验研究
刘凡, 秦娜, 牛健地, 郑亮
西南交通大学 机械工程学院, 四川 成都 610031
Finite element simulation and experimental research on rotary ultrasonic grinding of titanium alloy
LIU Fan, QIN Na, NIU Jian-di, ZHENG Liang
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
 全文: PDF(1466 KB)   HTML
摘要:

为了研究固结磨粒磨具的磨料粒度对旋转超声磨削钛合金磨削力的影响,采用随机空间平面切割正六面体的方法构建了具有实际磨粒几何特征的不规则多面体磨粒,并基于虚拟格子法建立了磨粒在磨具端面随机分布的多颗磨粒磨具模型。使用Deform-3D软件构建了三维旋转超声磨削钛合金有限元模型,采用拉格朗日增量算法获得了多颗磨粒磨具旋转超声磨削钛合金Ti6Al4V的磨削力仿真值,得到了磨料粒度对磨削力的影响规律,并通过试验进行了验证。结果表明,旋转超声磨削钛合金磨削力随着磨料粒度的增大而减小,且试验结果和仿真结果具有一致性,说明了多颗磨粒磨具模型、旋转超声磨削有限元模型具有一定的准确性,为多颗磨粒磨具旋转超声磨削的相关研究提供了新的方法。

关键词: 多颗磨粒虚拟格子法旋转超声磨削钛合金有限元分析    
Abstract:

In order to study the effects of the abrasive grain size of core tool on grinding force in rotary ultrasonic grinding titanium alloy, abrasive grain in the shape of irregular polyhedron was modeled by cutting regular hexahedron with random interception plane on a hexahedron. Based on virtual grid method, a simulation model of core drill with multi abrasive grains randomly distributing on the end face of tool was built. A 3D finite element model of rotary ultrasonic grinding of titanium alloy was developed by using Deform-3D. The simulation value of grinding force in rotary ultrasonic grinding of titanium alloy Ti6Al4V with multi abrasive grains was obtained by Lagrangian incremental algorithm, and the effects of the abrasive grain size on grinding force was investigated. A series of experiments were conducted to validate the grinding force in rotary ultrasonic grinding of titanium alloy. The result proved that rotary ultrasonic grinding force decreased as abrasive grain size increased and the experimental result agreed well with the simulation result. The result shows that the multi abrasive grain tool model and the finite element model of rotary ultrasonic grinding have certain accuracy. A new way for multi abrasive grain tool relational investigation in rotary ultrasonic grinding has been provided.

Key words: multi abrasive grain    virtual grid method    rotary ultrasonic grinding    titanium    finite element analysis
收稿日期: 2016-08-04 出版日期: 2017-04-28
CLC:  TH161.14  
基金资助:

国家自然科学基金资助项目(51305369);中国博士后科学基金资助项目(2012M521708);高等学校博士学科点专项科研基金新教师类课题(20130184120007);中央高校基本科研业务费专项资金资助项目(SWJTU11CX023);教育部重点实验室开放式基金资助项目(JMTZ201605)

通讯作者: 秦娜,女,四川眉山人,讲师,硕士生导师,博士,从事旋转超声加工研究,E-mail:tinaspirit@home.swjtu.edu.cn     E-mail: tinaspirit@home.swjtu.edu.cn
作者简介: 刘凡(1991-),男,湖北孝感人,硕士生,从事旋转超声加工研究,E-mail:liufan_swjtu@126.com,http://orcid.org//0000-0001-6282-8258
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘凡
秦娜
牛健地
郑亮

引用本文:

刘凡, 秦娜, 牛健地, 郑亮. 旋转超声磨削钛合金有限元仿真与试验研究[J]. 工程设计学报, 2017, 24(2): 162-167.

LIU Fan, QIN Na, NIU Jian-di, ZHENG Liang. Finite element simulation and experimental research on rotary ultrasonic grinding of titanium alloy[J]. Chinese Journal of Engineering Design, 2017, 24(2): 162-167.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.02.006        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I2/162

[1] 金和喜,魏克湘,李建明,等.航空用钛合金研究进展[J].中国有色金属学报,2015,25(2):280-292. JIN He-xi, WEI Ke-xiang, LI Jian-ming, et al. Research development of titanium alloy in aerospace industry[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2): 280-292.
[2] 房丰州,倪浩,宫虎.硬脆材料的旋转超声辅助加工[J].纳米技术与精密工程,2014,12(3):227-234. FANG Feng-zhou, NI Hao, GONG Hu. Rotary ultrasonic machining of hard and brittle materials[J]. Nanotechnology and Precision Engineering, 2014, 12(3): 227-234.
[3] WANG Y, LIN B, ZHANG X F. Research on the system matching model in ultrasonic vibration-assisted grinding[J]. International Journal of Advanced Manufacturing Technology, 2014, 70(1/4): 449-458.
[4] 郑书友,冯平法,徐西鹏.旋转超声加工技术研究进展[J].清华大学学报(自然科学版), 2009,49(11):1799-1804. ZHENG Shu-you, FENG Ping-fa, XU Xi-peng. Development trends of rotary ultrasonic machining technology[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(11): 1799-1804.
[5] 张承龙,冯平法,吴志军,等.旋转超声钻削的切削力数学模型及试验研究[J].机械工程学报,2011,47(15):149-155. ZHANG Cheng-long, FENG Ping-fa, WU Zhi-jun, et al. Mathematical modeling and experimental research for cutting force in rotary ultrasonic drilling[J]. Journal of Mechanical Engineering, 2011, 47(15): 149-155.
[6] 魏士亮,赵鸿,薛开,等.工程陶瓷脆性域旋转超声磨削加工切削力研究[J].哈尔滨工程大学学报,2014,35(8):976-981. WEI Shi-liang, ZHAO Hong, XUE Kai, et al. Investigation of the cutting force of rotary ultrasonic grinding machining in the brittle regime for engineering ceramics[J]. Journal of Harbin Engineering University, 2014, 35(8): 976-981.
[7] JIAO Y, LIU W J, PEI Z J, et al. Study on edge chipping in rotary ultrasonic machining of ceramics: an integration of designed experiments and finite element method analysis[J]. Journal of Manufacturing Science & Engineering, 2005, 127(4): 752-728.
[8] 王艳,张省,王帅,等.基于Deform-3D轴向超声辅助磨削仿真试验[J].系统仿真学报, 2015, 27(1):104-111. WANG Yan, ZHENG Sheng, WANG Shuai, et al. Simulation experiment of ultrasonic assisted grinding along axial direction on basis of Deform-3D[J]. Journal of System Simulation, 2015, 27(1): 104-111.
[9] 荆君涛,刘运凤,李占杰,等.旋转超声磨削加工中影响磨具寿命的结构参数优化[J].光学精密工程,2013,21(4):972-979. JING Jun-tao, LIU Yun-feng, LI Zhan-jie, et al. Optimization of structure parameters of affecting tool life in rotary ultrasonic grinding machining[J]. Optics and Precision Engineering, 2013, 21(4): 972-979.
[10] 张祥雷,姚斌,冯伟,等.基于多颗磨粒随机分布的虚拟砂轮建模及磨削力预测[J].航空学报,2014,35(12):3489-3498. ZHANG Xiang-lei, YAO Bin, FENG Wei, et al. Model of virtual grinding wheel based on random distribution of multi abrasive grains and prediction of grinding force[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3489-3498.
[11] 宿崇,许立,李明高,等.磨粒建模方法与切削过程仿真研究[J].航空学报,2012,33(11):2130-2135. SU Chong, XU Li, LI Ming-gao, et al. Study on modeling and cutting simulation of abrasive grains[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2130-2135.
[12] 刘东,陈五一.钛合金TC4切削过程流动应力模型研究[J].塑性工程学报,2008,15(1):167-171. LIU Dong, CHEN Wu-yi. Research on the flow stress model of titanium alloy TC4 during the cutting process[J]. Journal of Plasticity Engineering, 2008, 15(1): 167-171.
[13] 黄旭.先进航空钛合金材料与应用[M].北京: 国防工业出版社,2012: 58-63. HUANG Xu. Advanced aeronautical titanium alloys and applications[M]. Beijing: National Defence Industry Press, 2012: 58-63.
[14] 周兆锋,陈明和,范平,等.钛合金TC4热应力校形的数值模拟[J].南京航空航天大学学报, 2009, 41(5): 620-625. ZHOU Zhao-feng, CHEN Ming-he, FAN Ping, et al. Numerical simulation on hot sizing of titanium alloy TC4[J]. Journal of Nanjing University of Aeronautitics & Astronautics, 2009, 41(5): 620-625.
[15] CHURI N J, PEI Z J, TREADWELL C. Rotary ultrasonic machining of titanium alloy (Ti6Al4V): effects of tool variables[J]. International Journal of Precision Technology, 2007, 1(1): 85-96.
[1] 谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
[2] 张涛,王开松,唐威,秦可成,刘阳,石雨豪,邹俊. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.
[3] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[4] 李三平,孙腾佳,袁龙强,吴立国. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报, 2022, 29(6): 684-694.
[5] 赵致勃,顾大强,李立新,张靖. 基于接触应力优化的摆线轮修形设计[J]. 工程设计学报, 2022, 29(6): 713-719.
[6] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[7] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[8] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[9] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[10] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.
[11] 周超, 秦瑞江, 芮晓明. 风载荷作用下V形绝缘子串的力学特性分析[J]. 工程设计学报, 2021, 28(1): 95-104.
[12] 黄伟, 徐建, 陆新征, 胡明祎, 廖文杰. 动力装备和建筑楼盖的动力吸振研究[J]. 工程设计学报, 2021, 28(1): 25-32.
[13] 周超, 王阳, 芮晓明. 500 kV输电线路跳线风偏有限元分析与试验研究[J]. 工程设计学报, 2020, 27(6): 713-719.
[14] 李成兵, 雷鹏. 5 000 m3立式拱顶储罐应力分析与弱顶性能评价[J]. 工程设计学报, 2020, 27(2): 182-190.
[15] 刘召, 由宏新, 孙亮, 杨玉玲, 刘华清. 大型球罐悬吊式液压传动回转检测平台设计[J]. 工程设计学报, 2019, 26(3): 267-273.