Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (2): 156-161    DOI: 10.3785/j.issn.1006-754X.2017.02.005
设计理论与方法学     
基于模型重构的天线机电耦合仿真方法研究
任丹1, 王丹丹1, 郑雪晓2, 王勇2, 杜平安1
1. 电子科技大学 机械电子工程学院, 四川 成都 611731;
2. 中国西南电子技术研究所, 四川 成都 610036
Study on simulation method of antenna electromechanical coupling based on model reconstruction
REN Dan1, WANG Dan-dan1, ZHENG Xue-xiao2, WANG Yong2, DU Ping-an1
1. School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
2. Southwest China of Institute of Electronic Technology, Chengdu 610036, China
 全文: PDF(2277 KB)   HTML
摘要:

机电耦合涉及机械、电磁学、热学等学科,对产品性能有直接影响。在电子产品机电耦合分析中,不同物理场间的数据传递方法是研究的重点和难点。针对微波天线的机电耦合问题,提出了一种基于模型重构的天线机电耦合仿真方法并开发了相应的仿真平台。在仿真平台中,首先利用ANSYS进行力学分析;然后利用APDL语言编写接口程序,获取并导出由结构分析产生的变形网格,然后基于非均匀有理B样条曲线曲面(Non-Uniform Rational B-Spline,NURBS)理论,将变形网格重构出几何实体;最后将变形实体导入电磁场分析软件(electromagnetic field analysis software,HFSS)中进行天线电磁性能的计算。利用波导缝隙天线进行实验测试,测试结果验证了该方法的正确性。研究表明:机电耦合会影响天线的性能,且所提出的方法可用于天线设计阶段的机电耦合仿真分析。

关键词: 天线机电耦合模型重构NURBS    
Abstract:

Electromechanical coupling involving the interaction of mechanics, electromagnetics and thermotics, which has a direct impact on product’s performance. Data transfer between different physical fields is the key to the electromechanical coupling simulation. An method based on model reconstruction to analyze the electromechanical coupling of microwave antenna was presented and a simulation platform was developed. In the simulation platform, firstly, the mechanical analysis was carried out by ANSYS. Secondly, the APDL language was applied to obtain and export the deformed mesh of the structural analysis, and the deformation geometric entities was reconstructed by the Non-Uniform Rational B-Spline (NURBS) theory and deformed mesh. Finally, the deformation entities were imported into the HFSS (electromagnetic field analysis software) to calculate the performance of the deformation of antenna. The waveguide slot antenna was applied to verify the correctness between the method and measurement results. The study shows that the electromechanical coupling will affect the performance of antenna. This method can be used to analyze the electromechanical coupling of antenna at design stage.

Key words: antenna    electromechanical coupling    model reconstruction    NURBS
收稿日期: 2016-09-22 出版日期: 2017-04-28
CLC:  TN823  
基金资助:

国防基础科研重点项目(0D2014061300014)

通讯作者: 杜平安(1962-),男,四川成都人,教授,博士,从事数字化仿真与设计、机电耦合等研究,E-mail:dupingan@uestc.edu.cn     E-mail: dupingan@uestc.edu.cn
作者简介: 任丹(1986-),男,安徽淮南人,博士生,从事机电耦合、电磁兼容等研究,E-mail:rendan_uestc@163.com,http://orcid.org//0000-0003-0204-6144
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
任丹
王丹丹
郑雪晓
王勇
杜平安

引用本文:

任丹, 王丹丹, 郑雪晓, 王勇, 杜平安. 基于模型重构的天线机电耦合仿真方法研究[J]. 工程设计学报, 2017, 24(2): 156-161.

REN Dan, WANG Dan-dan, ZHENG Xue-xiao, WANG Yong, DU Ping-an. Study on simulation method of antenna electromechanical coupling based on model reconstruction[J]. Chinese Journal of Engineering Design, 2017, 24(2): 156-161.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.02.005        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I2/156

[1] 段宝岩. 电子装备机电耦合理论、方法及应用[M]. 北京:科学出版社,2011:10. DUAN Bao-yan. Electromechanical coupling theory, method and application of electronic equipment[M]. Beijing: Science Press, 2011: 10.
[2] STEPHAN R, ARNON L,GIL U,et al. Analysis of microstructural induced enhancement of electromechanical coupling in soft dielectrics[J]. Applied Physics Letters, 2013, 102(15): 151905.
[3] ERNESTO T, ANTONINO M, ROCCO R, et al. Numerical integration of coupled equations for high-speed electromechanical devices[J]. IEEE Transactions on Magnetics, 2015, 51(3): 7203404.
[4] PETER T B, BELA L, JOZSEF P. A coupled analytical-finite element technique for the calculation of radiation form tilted rectangular waveguide slot antennas[J]. IEEE Transactions on Magnetics, 2008, 44(6): 1666-1669.
[5] WANG C S, DUAN B Y, ZHANG F S, et al. Coupled structural-electromagnetic-thermal modelling and analysis of active phased array antennas[J]. IET Microwaves, Antennas & Propagation, 2010, 4(2): 247-257.
[6] AL-HATTAMLEH O, JEONG C, RICHARDS R F, et al. The effect of design and process parameters on electromechanical coupling for a thin-film PZT membrane[J]. Journal of Microelectromechanical Systems, 2006, 15(6): 1715-1725.
[7] RIEGER A, WRIGGERS P. Adaptive methods for thermomechanical coupled contact problems[J]. Journal of Numerical Methods in Engineering, 2004, 59(6):871-894.
[8] MBARKI R, BACCAM N, DAYAL K, et al. Piezoelectricity above the curie temperature combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling[J]. Applied Physics Letters, 2014,104(12): 122904.
[9] ZOCCHI F E. Estimation of the accuracy of a reflector surface form the measured RMS error[J]. IEEE Transactions on Instrumentation & Measurement, 2005, 54(5): 2124-2129.
[10] STEINBERG S D, Vibration analysis for electronic equipment [M]. New York: Wiley InterScience, 1988:56-60.
[11] VOELLER J. 25 technologies to watch [J]. Civil Engineering, 2001, 71(8): 64-69.
[12] 段宝岩. 电子装备机电耦合研究的现状与发展[J].中国科学(信息科学),2015,45(3):299-312. DUAN Bao-yan. Review of electromechanical coupling of electronic equipment[J]. Science China (information Science), 2015, 45(3): 299-312.
[13] 余伟,顾卫军,郭先松. 平板裂缝天线子阵形变后的方向图分析[J].现代雷达,2008,30(12):70-73. YU Wei, GU Wei-jun, GUO Xian-song. Pattern analysis for deformed subarray of planar slotted antenna array[J]. Modern Radar, 2008, 28(12): 70-73.
[14] LIU Shuang, ZHAO Shuang-shuang,WANG Zhao-long, et al. Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback[J]. Chinese Physics B, 2015, 24(1):014501.
[15] 彭博,杜平安,夏汉良,等. 电子产品多物理场耦合仿真方法研究[J].系统仿真学报, 2010, 22(4): 853-857. PENG Bo, DU Ping-an, XIA Han-liang, et al. Research on simulation method of electronics products multi-field coupling system[J]. Journal of System Simulation, 2010, 22(4): 853-857.
[16] 王国彪,段宝岩,黎明,等. 高精度电子装备机电耦合研究进展[J].中国科学基金,2014, 28(4): 241-250. WANG Guo-biao, DUAN Bao-yan, LI Ming, et al. Electromechanical coupling on high accuracy electronic equipments: a review[J]. Bulletin of National Natural Science Foundation of China, 2014, 28(4): 241-250.
[17] 王从思,王伟,宋立伟. 微波天线多场耦合理论与技术[M]. 北京:科学出版社, 2015: 152-155. WANG Cong-si, WANG Wei, SONG Li-wei. The theory and technology of multi field coupling of microwave antennas[M]. Beijing: Science Press, 2015: 152-155.
[1] 杨凤辉,汪敏,董亮,施硕彪. 大孔径全可动射电望远镜换馈系统设计[J]. 工程设计学报, 2023, 30(5): 617-625.
[2] 官俊,丁医华,葛青涛,赵帅,陆杨,张婕. 基于多材料3D打印技术的RFID天线快速制造[J]. 工程设计学报, 2023, 30(3): 288-296.
[3] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[4] 徐彦, 成强, 黄河, 周鑫, 李明. 绕单轴旋转的固面可展开天线展开过程研究[J]. 工程设计学报, 2020, 27(3): 301-306.
[5] 武聪魁, 何柏岩, 袁鹏飞. 计及金属铰链的环形可展天线热-结构分析[J]. 工程设计学报, 2020, 27(3): 349-356.
[6] 张书洋, 张朴真, 何永强, 潘博, 孟煜茗. 卫星天线一体化轴系驱动机构研究[J]. 工程设计学报, 2019, 26(4): 469-476.
[7] 黄华, 王庆文, 郭润兰, 刘晓健, 张来喜. 基于状态空间模型的机床加工精度分析[J]. 工程设计学报, 2019, 26(3): 321-329.
[8] 宋建虎. 某高轨星载数传天线的振动分析[J]. 工程设计学报, 2019, 26(3): 274-279.
[9] 王丹丹, 王勇, 郑雪晓, 杜平安. 随机振动对波导缝隙阵天线增益影响的等效算法研究[J]. 工程设计学报, 2017, 24(4): 365-372.
[10] 黄元君 ,楼平,吴志军,林小峰. 新型自适应RBF神经网络应用于微带天线建模[J]. 工程设计学报, 2014, 21(5): 426-431.
[11] 孙中飞,阿达依·谢尔亚孜旦,丁撼. 球面渐开线齿形的螺旋锥齿轮NURBS设计[J]. 工程设计学报, 2014, 21(3): 278-284.
[12] 庞维建,童创明,高建国,王 童. 新型半模基片集成波导漏波天线[J]. 工程设计学报, 2014, 21(3): 223-226.
[13] 陈永亮,韩瑶,刘谱,黄金,包能胜,顾佩华*. 五辊式无溶剂涂布系统交叉耦合建模与设计方法[J]. 工程设计学报, 2014, 21(1): 38-42.
[14] 杜义贤, 陈德, 周俊雄. 多载荷多工位转盘拓扑优化设计[J]. 工程设计学报, 2013, 20(3): 195-198.
[15] 耿林, 王光明, 张晨新, 曾宪峰. 一种新型复合左右手负阶谐振天线的设计[J]. 工程设计学报, 2012, 19(5): 405-407.