Please wait a minute...
工程设计学报  2020, Vol. 27 Issue (2): 172-181    DOI: 10.3785/j.issn.1006-754X.2020.00.026
保质设计     
刚柔协作3CD/2RPU-SPR搅拌摩擦焊机器人研究
张俊宝1, 侯红娟1, 刘健2, 孙丁丁1, 解磊磊1
1.河北工程大学 机械与装备工程学院, 河北 邯郸 056038;
2.复旦大学 工程与应用技术研究院, 上海 200433
Research on rigid-flexible 3CD/2RPU-SPR friction stir welding robot
ZHANG Jun-bao1, HOU Hong-juan1, LIU Jian2, SUN Ding-ding1, XIE Lei-lei1
1.School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China;
2.Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
 全文: PDF(2882 KB)   HTML
摘要: 为满足搅拌摩擦焊技术的要求,解决搅拌摩擦焊机器人在顶锻力承受以及焊接灵活性方面存在的不足,在三自由度2RPU-SPR搅拌摩擦焊机器人基础上增加了3根绳索,设计了一种刚柔协作3CD/2RPU-SPR搅拌摩擦焊机器人。基于运动学建模,运用封闭矢量法分别计算了3CD/2RPU-SPR搅拌摩擦焊机器人刚性部分与绳索部分的位置逆解;运用求导法求得了机器人刚性部分与绳索部分的速度雅克比矩阵,并运用特征长度法将雅克比矩阵无量纲化,基于求得的速度无量纲雅克比矩阵,利用MATLAB软件分别对添加绳索前后的搅拌摩擦焊机器人的各项运动学性能指标进行编程求解;应用遗传算法对3CD/2RPU-SPR搅拌摩擦焊机器人的性能指标进行优化,通过设定最优个体系数、种群数目、遗传进化次数,对满足3CD/2RPU-SPR搅拌摩擦焊接机器人全域刚度以及全域灵巧性的结构参数进行寻优求解。结果表明:3CD/2RPU-SPR搅拌摩擦焊机器人的承载力、灵巧性、全域灵巧性、刚度、全域刚度等性能指标均有所提高,且在综合考虑灵巧性以及刚度的优质工作空间内运动连续,说明3CD/2RPU-SPR搅拌摩擦焊机器人相较于2RPU-SPR搅拌摩擦焊机器人能够承受更大的顶锻力,且运动灵活性有所提高。通过遗传算法优化后找到符合3CD/2RPU-SPR搅拌摩擦焊机器人全域灵巧性以及全域刚度的10组结构参数,在综合考虑搅拌摩擦焊接工况下,从10组结构参数中选取最优的一组作为搅拌摩擦焊机器人的结构参数,在该结构参数下,机器人性能指标有所提高,更适合完成搅拌摩擦焊接工作。研究为提高机器人搅拌摩擦焊接质量提供了理论依据。
关键词: 搅拌摩擦焊刚柔协作雅克比矩阵性能指标    
Abstract: In order to meet the requirements of friction stir welding technology and solve the shortage of friction stir welding robots in withstanding upset forces and welding flexibility,a rigid-flexible 3CD/2RPU-SPR friction stir welding robot was designed by adding 3 ropes to the 3DOF 2RPU-SPR friction stir welding robot. The kinematics modeling was carried out,the closed vector method was used to obtain the inverse solutions of the positions of the rigid part and the rope part of the 3CD/2RPU-SPR friction stir welding robot,the derivative method was used to obtain the velocity Jacobian matrix of the rigid part and the rope part, and the characteristic length method was used to dimensionless the Jacobian matrix. According to the dimensionless velocity Jacobian matrix, the MATLAB software was used to program and solve the kinematic performance indicators of the friction stir welding robot before and after adding the rope. The performance indicators of 3CD/2RPU-SPR friction stir welding robot were optimized by genetic algorithm, the structural parameters satisfying the global stiffness and global dexterity of 3CD/2RPU-SPR friction stir welding robot were optimized by setting the optimal individual coefficient, population number and number of genetic evolution. Results showed that the performance indicators including the bearing capacity, dexterity, global dexterity, stiffness, global stiffness of 3CD/2RPU-SPR friction stir welding robot were all improved, and moving was continuous at the high-quality workspace considering dexterity and stiffness, illustrating 3CD/2RPU-SPR friction stir welding robot could withstand more upset forces compared with 2 RPU-SPR friction stir welding robot, the movement flexibility was improved.10 sets of structural parameters that met the global dexterity and global rigidity of the 3CD/2RPU-SPR friction stir welding robot were found by genetic algorithm. Under comprehensive consideration of the friction stir welding working conditions, the optimal set was selected as the structural parameter of friction stir welding robot. Working with this structure parameter, the robot performance indicators were improved, and it was more suitable for completing friction stir welding. The research provides a theoretical basis for improving the quality of robot friction stir welding.
Key words: friction stir welding    rigid-flexible cooperation    Jacobian matrix    performance index
收稿日期: 2019-10-16 出版日期: 2020-04-28
:  TP 242.3  
基金资助: 国家自然科学基金资助项目(51775165)
通讯作者: 侯红娟(1981—),女,河南商丘人,副教授,博士,从事机器人机构学及控制研究,E-mail: 2113512082@qq.com,https://orcid.org/0000-0001-7765-8992   
作者简介: 张俊宝(1994—), 男,河北廊坊人,硕士生,从事机器人机构学研究,E-mail:1134787899@qq.com,https://orcid.org/0000-0003-3640-5782
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张俊宝
侯红娟
刘健
孙丁丁
解磊磊

引用本文:

张俊宝, 侯红娟, 刘健, 孙丁丁, 解磊磊. 刚柔协作3CD/2RPU-SPR搅拌摩擦焊机器人研究[J]. 工程设计学报, 2020, 27(2): 172-181.

ZHANG Jun-bao, HOU Hong-juan, LIU Jian, SUN Ding-ding, XIE Lei-lei. Research on rigid-flexible 3CD/2RPU-SPR friction stir welding robot. Chinese Journal of Engineering Design, 2020, 27(2): 172-181.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2020.00.026        https://www.zjujournals.com/gcsjxb/CN/Y2020/V27/I2/172

[1] NUNOM, PEDRON, ALTINOL, et al. Machines and control systems for friction stir welding: a review[J]. Materials and Design, 2016, 90: 256-265. doi: 10. 1016/j.matdes.2015.10.124
[2] GRIMMA, SCHULZES, SILVAA, et al. Friction stir welding of light metals for industrial applications[J]. Materials Today: Proceedings, 2015, 2: S169-S178. doi: 10.1016/j.matpr.2015.05.007
[3] 邹成. 基于2UPR/RPS并联机构的搅拌摩擦焊机器人设计与研究[D]. 秦皇岛: 燕山大学机械工程学院,2016:23-53. ZOUCheng. Design and research of friction stir welding robot based on 2UPR / RPS parallel mechanism [D]. Qin huangdao: Yanshan University, School of Mechanical Engineering, 2016: 23-53.
[4] 张宁斌,项济南,李秦川,等. 2-SPR-RPS并联机构静力分析[J].浙江理工大学学报(自然科学版),2016,35(5):713-719. ZHANGNing-bin, XIANGJi-nan, LIQin-chuan, et al. Static analysis of 2-SPR-RPS parallel mechanism [J]. Journal of Zhejiang University of Science and Technology (Natural Science Edition), 2016, 35 (5): 713-719.
[5] SHIJing, WANGYu-han, ZHANGGang, et al. Optimal design of 3-DOF PKM module for friction stir welding [J]. The International Journal of Advanced Manufacturing Technology, 2013, 66 (9/12): 1879-1889. doi: 10. 1007/s00170-012-4467-7
[6] 陈淼,张氢,葛韵斐,等. 2UPR-RRU并联机构及其运动学分析[J].北京航空航天大学学报,2019,45(6):1145-1152. doi: 10.13700/j.bh.1001-5965.2018.0575 CHENMiao, ZHANGQing, GEYun-fei, et al. 2UPR-RRU parallel mechanism and its kinematics analysis [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (6): 1145-1152.
[7] BANDYOPADHYAYS, GHOSALA. An algebraic formulation of kinematic isotropy and design of isotropic 6-6 Stewart platform manipulators[J]. Mechanism and Machine Theory, 2007, 43(5): 591-616. doi: 10.1016/j. mechmachtheory.2007.05.003
[8] 刘国军. 六自由度运动模拟平台的分析及结构参数的优化[D]. 哈尔滨:哈尔滨工业大学机电工程学院,2014:71-73. LIUGuo-jun. Analysis of 6-DOF motion simulation platform and optimization of structural parameters[D]. Harbin: Harbin Institute of Technology, School of Mechanical and Electrical Engineering, 2014: 71-73.
[9] 张宁斌. 冗余驱动并联机构运动/力传递性能评价与优化设计[D].杭州:浙江理工大学机械与自动控制学院,2016:39-45. ZHANGNing-bin. Redundant drive parallel mechanism motion / force transmission performance evaluation and optimization design [D]. Hangzhou: Zhejiang University of Technology, School of Mechanical and Automatic Control, 2016: 39-45.
[10] 贾良飞,马朝锋,刘凯.基于蒙特卡罗法的硬岩掘进机辅助清渣装置工作空间分析[J].机械传动,2020,44(4):74-79. JIALiang-fei, MAChao-feng, LIUKai. Work space analysis of auxiliary slag removal device of hard rock tunneling machine based on Monte Carlo method [J]. Mechanical Transmission, 2020, 44 (4): 74-79.
[11] 叶伟,李秦川,张克涛. 一种运动部分解耦的2R2T并联机构运动学与性能分析[J]. 农业机械学报,2019,50(1):374-382. doi:10.6041/j.issn.1000-1298.2019.01. 043 YEWei, LIQin-chuan, ZHANGKe-tao. Kinematics and performance analysis of 2R2T parallel manipulator with partially decoupled motion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 374-382.
[12] 畅博彦,李晓宁,金国光,等. 具有整周回转能力的3T1R并联机构运动学分析[J].农业机械学报,2019,50(7):406-416. doi:10.3969/j.issn.2095-8439.2019.11.222 CHANGBo-yan, LIXiao-ning, JINGuo-guang, et al. Kinematics analysis of novel 3T1R parallel manipulator with full rotational capability[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(7): 406-416.
[13] 张亚军,李开明. 一种特殊球面机构的承载能力分析[J]. 机械制造与自动化, 2017,46(3):63-66. doi: 10.19344/j.cnki. issn1671-5276.2017.03.018 ZHANGYa-jun, LIKai-ming. Analysis of load carrying capacity of special spherical mechanism[J]. Machine Building & Automation, 2017, 46(3): 63-66.
[14] SHANX L, CHENGG. Kinematic analysis and parameter optimization for a novel 2 (3HUS+S) parallel hip joint simulator[J]. International Journal of Robotics and Automation, 2017, 32(4): 379-386. doi: 10.2316/Journal.206.2017. 4.206-4824
[15] GAOJ S, LIM X, LIY Y, et al. Singularity analysis and dimensional optimization on a novel serial-parallel leg mechanism[J]. Procedia Engineering, 2017, 174: 45-52. doi: 10.1016/j.proeng. 2017.01.140
[16] 王南,周海栋,崔国华,等.基于三转动并联机构的茶叶筛分装置运动学性能研究[J].工程设计学报,2014,21(3):266-272. doi: 10.3785/j.issn.1006-754X.2014. 03.011 WANGNan, ZHOUHai-dong, CUIGuo-hua, et al. Study of kinematic performance of the tea screening plant based on three rotation parallel mechanism[J]. Chinese Journal of Engineering Design, 2014, 21(3): 266-272.
[17] 刘健. 刚柔协作搅拌摩擦焊机器人机构设计与性能研究[D]. 邯郸:河北工程大学机械与装备工程学院, 2019:25-26. LIUJian. Design and performance of rigid-flex collaborative friction stir welding robot mechanism[D]. Handan: Hebei University of Engineering, School of Mechanical and Equipment Engineering, 2019: 25-26.
[18] 陈世钟. SCARA机器人优化设计及负载校核[D]. 广州:华南理工大学机械与汽车工程学院,2015:28-38. CHENShi-zhong. SCARA robot optimization design and load check[D]. Guangzhou: South China University of Technology, School of Mechanical and Automotive Engineering, 2015: 28-38.
[19] 马琨,马宏伟,田海波.2-PrRS-PR(P)S并联变胞机构工作空间分析与优化[J].机械传动,2020,44(3):57-65. MAKun, MAHong-wei, TIANHai-bo. Workspace analysis and optimization of 2-PrRS-PR(P)S parallel metamorphic mechanism [J]. Mechanical Transmission, 2020, 44 (3): 57-65.
[20] 李彬,张云,王立平,等. 基于遗传算法优化小波神经网络数控机床热误差建模[J].机械工程学报,2019,55(21):215-220. doi: 10.3901/JME.2019.21.215 LIBin, ZHANGYun, WANGLi-ping, et al. Modeling for CNC machine tool thermal error based on genetic algorithm optimization wavelet neural networks [J]. Journal of Mechanical Engineering, 2019, 55(21): 215-220.
[1] 张俊宝, 侯红娟, 崔国华, 刘健. 一类刚柔协作混联机器人机构的绳索数量和位置分布研究[J]. 工程设计学报, 2020, 27(3): 364-372.
[2] 高征, 王璐, 郭钰莹. 索杆式风电叶片检测装置的运动学分析[J]. 工程设计学报, 2018, 25(2): 188-193.