Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (4): 429-437    DOI: 10.3785/j.issn.1006-754X.2023.00.049
机械设计理论与方法     
摇摆激励喷雾冷却实验装置设计
朱发兴1,2(),董月1,吴寒旭1,赵可1,陈肇麟1,蒋彦龙1()
1.南京航空航天大学 航空学院,江苏 南京 210016
2.杭州汉品工业设计有限公司,浙江 杭州 310000
Design of spray cooling experiment device with swing excitation
Faxing ZHU1,2(),Yue DONG1,Hanxu WU1,Ke ZHAO1,Zhaolin CHEN1,Yanlong JIANG1()
1.College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2.Hangzhou Hanpin Industrial Design Co. , Ltd. , Hangzhou 310000, China
 全文: PDF(4113 KB)   HTML
摘要:

喷雾冷却技术广泛应用于高热流密度机载设备的高效换热。为更好地开展喷雾冷却换热特性实验研究,设计并搭建了摇摆激励喷雾冷却实验装置。首先,通过监测温度、压力及流量等实验数据,以及对模拟加热源进行热沉壁面温度、热流密度和传热系数的不确定度分析,设计了喷雾换热腔系统、摇摆控制系统和数据采集分析系统。然后,通过开展不同幅度摇摆激励下的稳态喷雾冷却换热特性实验来验证所设计装置及方法的可行性。结果表明,喷雾冷却分为浸没喷雾、半浸没喷雾及正常喷雾三个阶段;摇摆激励引起的换热废液不正常排出导致喷雾冷却换热行为发生了变化,在摇摆过程中热沉壁面温度和热流密度剧烈波动;摇摆停止后积液开始不断减少,随着积液高度的不断降低,喷雾冷却换热特性随之变动。在喷雾冷却过程中,幅度不同的摇摆激励下热沉壁面温度的增幅最高可达26.47%,约升高了10.915 ℃;铜柱热流密度的降幅高达5.42%,约下降了4.126 W/cm2。所设计的实验装置稳定可靠,对机载设备喷雾冷却换热特性的研究和工程应用具有一定价值。

关键词: 喷雾冷却不确定度积液摇摆激励换热    
Abstract:

Spray cooling technology is widely used in the efficient heat transfer of airborne equipment with high heat flux. In order to better carry out the experimental research on the heat transfer characteristics of spray cooling, an spray cooling experiment device with swing excitation was designed and built. Firstly, by monitoring the experimental data such as temperature, pressure and flow rate, and analyzing the uncertainty of the heat sink wall temperature, heat flux density and heat transfer coefficient of the simulated heat source, the spray heat transfer chamber system, swing control system and data acquisition and analysis system were designed. Then, the feasibility of the designed device and method was verified by conducting steady spray cooling heat transfer characteristics experiments under swing excitation with different amplitudes. The results showed that spray cooling could be divided into three stages: submerged spray, semi-submerged spray and normal spray; the abnormal discharge of heat transfer waste liquid caused by swing excitation changed the heat transfer behavior of spray cooling, and the heat sink wall temperature and heat flux density fluctuated violently during the swing process; after the swing stopped, the liquid accumulation began to decrease; with the decrease of liquid accumulation height, the heat transfer characteristics of spray cooling changed. In the process of spray cooling, the heat sink wall temperature increased by 26.47% under swing excitation with different amplitudes, about 10.915 ℃; the heat flux density of copper column decreased by 5.42%, about 4.126 W/cm2. The designed experiment device is stable and reliable, and has certain value for the research and engineering application of the spray cooling heat transfer characteristics of airborne equipment.

Key words: spray cooling    uncertainty    fluid accumulation    swing excitation    heat transfer
收稿日期: 2022-12-05 出版日期: 2023-09-04
CLC:  TH 71  
基金资助: 国家自然科学基金资助项目(12002161);江苏省研究生科研与实践创新计划项目(KYCX21_0227);高空消耗式相变换热技术研究项目(1001-KFA20680)
通讯作者: 蒋彦龙     E-mail: 749952170@qq.com;jiang-yanlong@nuaa.edu.cn
作者简介: 朱发兴(1989—),男,浙江杭州人,工程师,博士生,从事人机与环境工程研究,E-mail: 749952170@qq.com,https://orcid.org/0009-0003-3540-3950
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱发兴
董月
吴寒旭
赵可
陈肇麟
蒋彦龙

引用本文:

朱发兴,董月,吴寒旭,赵可,陈肇麟,蒋彦龙. 摇摆激励喷雾冷却实验装置设计[J]. 工程设计学报, 2023, 30(4): 429-437.

Faxing ZHU,Yue DONG,Hanxu WU,Ke ZHAO,Zhaolin CHEN,Yanlong JIANG. Design of spray cooling experiment device with swing excitation[J]. Chinese Journal of Engineering Design, 2023, 30(4): 429-437.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.049        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/429

图1  摇摆激励喷雾冷却实验装置方案
图2  喷雾换热腔系统整体装配图
图3  喷雾换热腔系统结构分解图
图4  喷雾换热腔系统内部截面示意
图5  铜柱剖视图
图6  喷雾换热腔坐标系示意
图7  伺服电机控制器硬件框图
图8  伺服电机控制流程
图9  摇摆激励喷雾冷却实验装置实物图
图10  摇摆激励下喷雾冷却实验流程
图11  不同摇摆激励下铜柱热沉壁面温度的变化曲线
图12  不同摇摆激励下铜柱热流密度的变化曲线
图13  摇摆幅度为105°工况下积液冲刷喷雾区域
图14  摇摆幅度为105°工况下的喷雾冷却阶段
15 LU J, LI Y L, XU L, et al. Droplet spreading on an oblique surface[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(X): 1-9.
doi: 10.11729/syltlx20220012
16 WANG J X, GUO W, XIONG K, et al. Review of aerospace-oriented spray cooling technology[J]. Progress in Aerospace Sciences, 2020, 116: 100635.
17 ZHANG Y, PANG L, LIU M, et al. Investigation of spray cooling: effect of different heater surfaces under acceleration[J]. International Communications in Heat and Mass Transfer, 2016, 75: 223-231.
18 HOU Y, LIU X F, LIU J H, et al. Experimental study on phase change spray cooling[J]. Experimental Thermal and Fluid Science, 2013, 46: 84-88.
19 LIU J H, XUE R, CHEN L, et al. Influence of chamber pressure on heat transfer characteristics of a closed loop R134-a spray cooling[J]. Experimental Thermal and Fluid Science, 2016, 75: 89-95.
20 朱发兴,蒋彦龙,赵可,等.一种摆动喷雾冷却实验装置:CN113281588B[P].2022-04-08.
ZHU F X, JIANG Y L, ZHAO K, et al. An experimental device for oscillating spray cooling: CN113281588B[P]. 2022-04-08.
21 王瑜.机载闭式喷雾冷却系统性能实验及特性研究[D].南京:南京航空航天大学,2016:66-68.
WANG Y. Experiment and investigation into the performance of a closed-loop aircraft spray cooling system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 66-68.
1 GAO X, LI R. Spray impingement cooling: the state of the art[M]//Advanced Cooling Technologies and Applications. London: IntechOpen, 2019: 27-51.
2 谢明君,王建,孙彤辉.某无人机功放载荷被动散热结构设计[J].中国设备工程,2019(20):142-144. doi:10.3969/j.issn.1671-0711.2019.20.083
XIE M J, WANG J, SUN T H. Design of passive heat dissipation structure for a UAV power amplifier[J]. China Plant Engineering, 2019(20): 142-144.
doi: 10.3969/j.issn.1671-0711.2019.20.083
3 齐文亮,王婉人,杨雨薇,等.航空电子设备喷雾冷却技术研究进展[J].科技导报,2022,40(5):95-104.
QI W L, WANG W R, YANG Y W, et al. Research progress of spray cooling technology for avionics[J]. Science and Technology Review, 2022, 40(5): 95-104.
4 曹磊,陈剑楠,姜培学,等.基于制冷循环的闭式喷雾冷却系统实验研究[J].工程热物理学报,2018,39(2):373-378.
CAO L, CHEN J N, JIANG P X, et al. Experimental investigation of spray cooling system in a closed loop based on refrigeration cycle[J]. Journal of Engineering Thermophysics, 2018, 39(2): 373-378.
5 SINGH S, KUKREJA R. Experimental investigations on heat transfer enhancement of enhanced surfaces in spray cooling using HFE-649[J]. International Journal of Multiphase Flow, 2023, 161: 104387.
6 MA D Y, CHANG S N, WU K, et al. Experimental investigation on the characteristics of film thickness and temperature on the heated surface during spray cooling[J]. Sustainable Energy Technologies and Assessments, 2022, 51: 101871.
7 GOLLIHER E, LICARI A, JIN T. Testing of a compact flash evaporator system for exploration[C]//38th International Conference on Environmental Systems, San Francisco, California, Jun. 29- Jul. 2, 2008.
8 周年勇.机载喷雾冷却特性的实验与研究[D].南京:南京航空航天大学,2016:40-42,88-90.
ZHOU N Y. Experiment and study on the performance of airborne spray cooling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 40-42, 88-90.
9 BAYSINGER K, YERKES K, HARRIS R, et al. Design of a microgravity spray cooling experiment[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 5-8, 2004.
10 KATO M, ABE Y, MORI Y, et al. Spray cooling characteristics under reduced gravity[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(2): 378-381.
11 杨春光.高热流密度激光介质喷雾冷却技术研究[D].绵阳:中国工程物理研究院,2020:53-55. doi:10.11884/HPLPB202032.200021
YANG C G. Research on spray cooling technology of high heat flux laser medium[D]. Mianyang: China Academy of Engineering Physics, 2020: 53-55.
doi: 10.11884/HPLPB202032.200021
12 ZHAO K, WANG Y, DING Y, et al. Numerical and theoretical study on the spreading characteristics of droplet impact on a horizontal flowing liquid film[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616: 126338.
13 张振豪.基于多介质比较的机载条件下喷雾冷却特性模拟研究[D].南京:南京航空航天大学,2020:33-68. doi:10.33737/gpps19-bj-166
ZHANG Z H. Simulation study on the performance of airborne spray cooling based on comparison of multiple media[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 33-68.
doi: 10.33737/gpps19-bj-166
14 LI D S, DUAN X L. Numerical analysis of droplet impact and heat transfer on an inclined wet surface[J]. International Journal of Heat and Mass Transfer, 2019, 128: 459-468.
[1] 张勇德,王青,杨伟峰. 基于关键测量特征的机翼对接容差分配[J]. 工程设计学报, 2022, 29(3): 300-308.
[2] 付扬, 李国龙, 徐凯, 唐晓东. 基于多源融合理论的机床圆度误差测量不确定度评定[J]. 工程设计学报, 2021, 28(3): 278-286.
[3] 卢燕, 王珏, 凌明祥, 杜平安. 精密离心机热变形多物理场耦合数值计算[J]. 工程设计学报, 2016, 23(1): 49-53,73.
[4] 孙立军,张子磐,蔡兵新,刘大伟,徐天室. 水流量装置电动换向器研究[J]. 工程设计学报, 2015, 22(5): 487-492.
[5] 王文斌, 沈振军. 换热器热传递的有限元分析[J]. 工程设计学报, 2012, 19(3): 213-216.
[6] 刘军, 吴硕开, 谢文磊, 岳兴莲. 车用列管水套式排气换热器的设计与换热性能研究[J]. 工程设计学报, 2010, 17(1): 40-45.
[7] 孙爱芳,刘敏珊,董其伍. 特殊板壳式换热器封板的有限元模拟及强度研究[J]. 工程设计学报, 2008, 15(4): 295-299.
[8] 王中宇, 秦平. 测量不确定度的灰评定[J]. 工程设计学报, 2000, 7(4): 89-91.
[9] 过大江. 精密仪器不确定度推断方法的建议[J]. 工程设计学报, 2000, 7(4): 72-74.