Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (1): 32-38    DOI: 10.3785/j.issn.1006-754X.2023.00.009
创新设计     
电力隧道自动巡检机器人设计与运动仿真
徐诗洋(),吴炳晖(),纪冬梅(),戴新宇
上海电力大学 能源与机械工程学院,上海 201306
Design and motion simulation of automatic inspection robot for power tunnel
Shi-yang XU(),Bing-hui WU(),Dong-mei JI(),Xin-yu DAI
College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China
 全文: PDF(3326 KB)   HTML
摘要:

针对现有电力隧道巡检机器人自动化程度不足、视野和观测角度有限的问题,设计了一款子母式自动巡检机器人。其中:具有移动功能的巡检机器人母机能够完成主要的日常巡检工作,并具备越障、避障能力;具有攀爬功能的子机能够完成复杂环境、极限角度条件下的勘测任务。子、母机共同协作可完成整个电力隧道的自动化巡检。首先,基于总体功能需求,提出了巡检机器人各模块的具体形式,并完成了其自动巡检的逻辑系统分层设计。然后,基于虚拟样机技术,在ADAMS(automatic dynamic analysis of mechanical systems,机械系统动力学自动分析)软件中建立电力隧道运行环境,并结合运动学仿真分析结果优化巡检机器人母机的结构,以提升机器人在隧道内作业的平稳性并确保其所搭载的传感器均能正常工作。结果表明,母机结构优化后,巡检机器人能够平稳运行,传感器平台的抖动幅度在5 mm内,且搭载的各传感器均能正常工作,验证了该机器人方案设计的合理性。相关理论研究结果可为电力隧道自动巡检机器人物理样机的研制提供可靠的技术支撑。

关键词: 自动巡检机器人子母式逻辑系统运动学仿真    
Abstract:

Aiming at the problems of insufficient automation and limited vision and observation angle of existing power tunnel inspection robots, a parent-child automatic inspection robot was designed. Among them, the master machine of inspection robot with mobile function could complete the main routine inspection work, and it had the ability to surmount and avoid obstacles; the slave machine with climbing function could complete the survey task under complex environment and extreme angle conditions. The slave machine and master machine could cooperate to complete the automatic inspection of the entire power tunnel. Firstly, based on the overall functional requirements, the specific form of each module of the inspection robot was proposed, and the hierarchical design of its automatic inspection logic system was completed. Then, the power tunnel operation environment was established in the ADAMS (automatic dynamic analysis of mechanical systems) software based on the virtual prototype technology, and the structure of the inspection robot master machine was optimized by combining the results of kinematic simulation analysis, so as to improve the stability of the robot operating in the tunnel and ensure that the sensors carried by the robot could work normally. The results showed that the inspection robot could run smoothly after the optimization of the master machine structure, the jitter amplitude of the sensor platform was within 5 mm, and all the sensors could work normally, which verified the rationality of the robot design. The relevant theoretical research results can provide reliable technical support for the development of the power tunnel automatic inspection robot physical prototype.

Key words: automatic inspection robot    parent-child    logic system    kinematic simulation
收稿日期: 2022-05-30 出版日期: 2023-03-06
CLC:  TH 122  
基金资助: 上海市自然科学基金资助项目(19ZR1420300)
通讯作者: 吴炳晖,纪冬梅     E-mail: xsy0341@163.com;wubinghui72@163.com;jdm@shiep.edu.cn
作者简介: 徐诗洋(1997—),男,江西上饶人,硕士生,从事机器人结构设计及自动化研究,E-mail: xsy0341@163.com,https://orcid.org/0000-0001-7246-3627
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐诗洋
吴炳晖
纪冬梅
戴新宇

引用本文:

徐诗洋,吴炳晖,纪冬梅,戴新宇. 电力隧道自动巡检机器人设计与运动仿真[J]. 工程设计学报, 2023, 30(1): 32-38.

Shi-yang XU,Bing-hui WU,Dong-mei JI,Xin-yu DAI. Design and motion simulation of automatic inspection robot for power tunnel[J]. Chinese Journal of Engineering Design, 2023, 30(1): 32-38.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.009        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I1/32

图1  子母式自动巡检机器人整机三维模型
图2  四履带式行走机构
图3  六足爬墙机器人
图4  六足爬墙机器人单腿结构
图5  爬墙机器人受力分析
图6  传感器平台结构示意
图7  载物机构结构示意
图8  调平机构结构示意
图9  监测层逻辑结构
图10  路径规划层逻辑结构
图11  电力隧道仿真模型
图12  巡检机器人质心的竖直位移和速度变化曲线
图13  巡检机器人越障仿真模型
图14  传感器平台的竖直位移和速度曲线
图15  添加弹簧减振器后传感器平台的竖直位移和速度曲线
8 周城,段相坤.某建筑机器人真空泵的选型计算[J].一重技术,2021(3):32-34,27.
ZHOU Cheng, DUAN Xiang-kun. Selection and calculation of vacuum pump for construction robot[J]. CFHI Technology, 2021(3): 32-34, 27.
9 席阿行,赵津,周滔,等.UAV/UGV协同环境下的目标识别与全局路径规划研究[J].电子技术应用,2019,45(1):5-9. doi:10.16157/j.issn.0258-7998.182261
XI A-xing, ZHAO Jin, ZHOU Tao, et al. Target searching and global path planning in UAV/UGV cooperative systems[J]. Application of Electronic Technique, 2019, 45(1): 5-9.
doi: 10.16157/j.issn.0258-7998.182261
10 柴慧敏,方敏,吕少楠.基于态势评估技术的移动机器人局部路径规划[J].计算机科学,2019,46(4):210-215. doi:10.11896/j.issn.1002-137X.2019.04.033
CHAI Hui-min, FANG min, Shao-nan LÜ. Local path planning of mobile robot based on situation assessment technolog[J]. Computer Science, 2019, 46(4): 210-215.
doi: 10.11896/j.issn.1002-137X.2019.04.033
11 田野,徐忠林,袁坤,等.电力隧道在线监控与智能巡检模式建设[J].现代隧道技术,2021,58(S1):150-155.
TIAN Ye, XU Zhong-lin, YUAN kun, et al. Construction of online monitoring and intelligent patrol inspection modes for power tunnel[J]. Modern Tunnelling Technology, 2021, 58(S1): 150-155.
12 陈峰华.ADAMS 2016虚拟样机技术从入门到精通[M].北京:清华大学出版社,2017:105-114.
CHEN Feng-hua. ADAMS 2016 virtual prototype technology from introductory to mastery[M]. Beijing: Tsinghua University Press, 2017: 105-114.
13 张瑛,张屹,王承.电力隧道结构特点及常见病害分析[J].供用电,2011,28(2):67-69. doi:10.3969/j.issn.1006-6357.2011.02.019
ZHANG Ying, ZHANG Yi, WANG Cheng. Analysis on the power tunnel structure features and its common diseases[J]. Distribution & Utilization, 2011, 28(2): 67-69.
doi: 10.3969/j.issn.1006-6357.2011.02.019
1 周艳文,陈亚军,龙彪,等.城市电力隧道施工发展前景及工法比选[J].山西建筑,2019,45(8):144-146. doi:10.3969/j.issn.1009-6825.2019.08.077
ZHOU Yan-wen, CHEN Ya-jun, LONG Biao, et al. The prospects for development and construction method comparison of urban electric power tunnel construction[J]. Shanxi Architecture, 2019, 45(8): 144-146.
doi: 10.3969/j.issn.1009-6825.2019.08.077
2 王雪.电缆隧道综合监测系统设计与实现[D].西安:西安科技大学,2020:9-15.
WANG Xue. Design and implementation of cable tunnel integrated monitoring system[D]. Xi’an: Xi’an University of Science and Technology, 2020: 9-15.
3 JIANG Bing, SAMPLE A P, WISTORT R M, et al. Autonomous robotic monitoring of underground cable systems[C]//12th International Conference on Advanced Robotics, Seattle, WA, Jul. 18-20, 2005.
4 杨旭东,黄玉柱,李继刚,等.变电站巡检机器人研究现状综述[J].山东电力技术,2015,42(1):30-34. doi:10.3969/j.issn.1007-9904.2015.01.006
YANG Xu-dong, HUANG Yu-zhu, LI Ji-gang, et al. Research status review of robots applied in substations for equipment inspection[J]. Shandong Electric Power, 2015, 42(1): 30-34.
doi: 10.3969/j.issn.1007-9904.2015.01.006
5 新华社.全国首台轨道式变电站巡检机器人投入试运行[J].农村电工,2012,20(5):49.
Xinhua News Agency. The country’s first track-type substation inspection robot was put into trial operation [J]. Rural Electician, 2012, 20(5): 49.
6 郝宏伟.朗驰欣创:打造机器人新生态[J].中国建设信息化,2018(9):19-21.
HAO Hong-wei. Langchi Xinchuang: create the new ecosystem of robots[J]. Informatization of China Construction, 2018(9): 19-21.
7 黄嘉盛,卢润戈,邱冠武,等.轮式智能巡检机器人在电力隧道环境应用[J].电工技术,2019(4):78-79. doi:10.3969/j.issn.1002-1388.2019.04.034
HUANG Jia-sheng, LU Run-ge, QIU Guan-wu, et al. Application of wheeld intelligent inspection robot in power tunnel environment[J]. Electric Engineering, 2019(4): 78-79.
doi: 10.3969/j.issn.1002-1388.2019.04.034
14 焦宝玉,韩艳茹,岳若锋.关于传感器在机器人中的应用分析[J].信息记录材料,2021,22(3):181-182.
JIAO Bao-yu, HAN Yan-ru, YUE Ruo-feng. Application analysis of sensor in robot[J]. Information Recording Materials, 2021, 22(3): 181-182.
15 邢国芬.工业机器人传感器技术综述[J].中国设备工程,2021(22):25-26. doi:10.3969/j.issn.1671-0711.2021.22.015
XING Guo-fen. Overview of sensor technology for industrial robots[J]. China Plant Engineering, 2021(22): 25-26.
doi: 10.3969/j.issn.1671-0711.2021.22.015
[1] 白仲航,艾琳璟. 基于功能表面驱动与可拓工具的产品人机工程问题确定方法研究[J]. 工程设计学报, 2023, 30(5): 531-544.
[2] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[3] 杜雪林,易文慧,邹家华,周灿,毛立,邓利诗,刘颖. 多关节蛇形机器人的结构设计和运动实现[J]. 工程设计学报, 2023, 30(4): 438-448.
[4] 王金栋,谢宇鸿,陈燚,吴展扬. 基于河狸门齿的锤片式粉碎机锤片仿生设计[J]. 工程设计学报, 2023, 30(4): 476-484.
[5] 杨展,李其朋,唐威,秦可成,陈岁繁,王铠迪,刘阳,邹俊. 小型陆空变形两栖机器人的设计与分析[J]. 工程设计学报, 2023, 30(3): 325-333.
[6] 官俊,丁医华,葛青涛,赵帅,陆杨,张婕. 基于多材料3D打印技术的RFID天线快速制造[J]. 工程设计学报, 2023, 30(3): 288-296.
[7] 丁宇奇,杨超梁,芦烨,杨明,张佳贺,刘凯,卢宏. 基于多判别条件的储罐内爆弱顶性能评价分析[J]. 工程设计学报, 2023, 30(2): 144-153.
[8] 杨淦华,曾庆军,韩春伟,黄鑫,戴晓强. 人机交互遥操作机器人软体手位置跟踪设计与实现[J]. 工程设计学报, 2023, 30(2): 164-171.
[9] 孙光明,张大卫,孙铭泽,徐鹏飞,陈发泽,李志军. 精密机床直线进给系统误差均化机理研究[J]. 工程设计学报, 2023, 30(2): 200-211.
[10] 段韦婕,秦慧斌,刘荣,李中一,白绍平. 可重构变刚度柔性驱动器的设计与性能分析[J]. 工程设计学报, 2023, 30(2): 262-270.
[11] 李雪萍,冉琰. 多准则模糊关联的机械产品关键元动作识别[J]. 工程设计学报, 2022, 29(5): 527-536.
[12] 张嘉宁,张明路,李满宏,张坦. 面向灰库清理的超大伸缩比机械臂结构设计与刚度优化[J]. 工程设计学报, 2022, 29(4): 430-437.
[13] 王晨,高波,杨旭. Stewart式六维力传感器轻量化设计[J]. 工程设计学报, 2022, 29(4): 419-429.
[14] 王景良,朱天成,朱龙彪,许飞云. 连续体结构的变密度拓扑优化方法研究[J]. 工程设计学报, 2022, 29(3): 279-285.
[15] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.