Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (4): 814-823    DOI: 10.3785/j.issn.1008-973X.2023.04.019
    
Refined finite element analysis of tensile property of grout sleeve splicing of rebars
Jia-wen BAO1,2(),Qiang GAO3,Lin TANG4,Wei-jian ZHAO1,2,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310058, China
3. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
4. Shanghai Baoye Group Corporation, Shanghai 201900, China
Download: HTML     PDF(3279KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The rib-scale refined finite element (FE) model of the spliced specimen was established by using the FE software DIANA 10.3 to analyze the connection performance under the uniaxial tensile load in order to reveal the micro-working mechanism of the grouted sleeve connection, as well as the cracking development and failure mechanism of the inner grout material. Results show that the refined FE models can reflect the failure modes, the ultimate capacities, the load-displacement relationship, the strain distribution of the spliced bar and the sleeve. The captured cracks are conical cracks in the rebar anchorage zone, which are distributed at an angle between 35°~45° with the axial of the sleeve. The shear failure of the grout keys leads to the failure of rebar interlocking, resulting in the inward transfer of the effective confining surface of the sleeve. The sleeve rib, arranged at the free end of the anchored bar, cannot fulfill its resistant effect on the grout. The stress transfer mechanism with conical-compressive struts is not formed in the pure grouted zone.



Key wordsgrouted sleeve connection      whole grout sleeve      refined finite element model      finite element analysis      strain distribution      crack propagation     
Received: 06 April 2022      Published: 21 April 2023
CLC:  TU 317  
Fund:  中央大学基础研究基金资助项目(2020QNA4029);浙江大学平衡建筑研究中心资助项目
Corresponding Authors: Wei-jian ZHAO     E-mail: 21912040@zju.edu.cn;zhaoweijian@zju.edu.cn
Cite this article:

Jia-wen BAO,Qiang GAO,Lin TANG,Wei-jian ZHAO. Refined finite element analysis of tensile property of grout sleeve splicing of rebars. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 814-823.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.04.019     OR     https://www.zjujournals.com/eng/Y2023/V57/I4/814


钢筋套筒灌浆连接拉伸性能的精细有限元分析

为了揭示钢筋套筒灌浆连接接头的细观工作机理和内部灌浆料的开裂、破坏过程,利用DIANA 10.3有限元软件建立接头试件的肋尺度精细化有限元模型,研究轴向拉伸荷载下接头的连接性能. 结果表明,利用该模型能够准确地反映接头试件的破坏模式、极限承载力、荷载-位移曲线及钢筋和套筒的轴向应变分布规律;钢筋锚固区灌浆料中的圆锥状裂缝与接头轴向呈35°~45°夹角分布;灌浆键的剪切破坏会导致钢筋的机械咬合作用失效,造成套筒有效约束面内移;布置在钢筋自由端的套筒肋无法充分发挥对灌浆料的止推作用;纯灌浆段无法形成锥面斜压杆应力传递机制.


关键词: 钢筋套筒灌浆连接,  全灌浆套筒,  精细有限元模型,  有限元分析,  应变分布,  裂缝开展 
编号 钢筋 灌浆套筒 破坏模式
d/mm la/mm ls/mm N dr/mm ds/mm ts/mm
A1 25 100 380 5 25 43 4 拔出破坏
A2 25 150 380 5 25 43 4 拉断破坏
B1 25 125 430 5 30 43 4 拔出破坏
B2 25 175 430 5 30 43 4 拉断破坏
C1 25 150 480 6 30 43 4 拔出破坏
C2 25 200 480 6 30 43 4 拉断破坏
Tab.1 Geometric parameters of spliced specimens
Fig.1 Geometric structure of grouted-sleeve connection
类别 Es/MPa fy/MPa fu/MPa A/%
钢筋-I 2.00×105 435 585 22.3
钢筋-II 2.00×105 435 625 26.4
套筒 2.06×105 390 505 21.0
Tab.2 Material properties of rebar and sleeve
Fig.2 Layout of strain gauge
Fig.3 Arrangement of displacement meters and test setup
Fig.4 Constitutive curve of sleeve
Fig.5 Constitutive curves of rebars
参数 数值
弹性模量Ec 23 GPa
泊松比ν 0.2
抗压强度fcm 80.2 MPa
抗拉强度ftm 4 MPa
断裂能Gf 0.161 N/mm
Tab.3 Constitutive-model parameters of grout material
Fig.6 Compressive constitutive curve of grout material
Fig.7 Tensile constitutive curve of grout material
Fig.8 Meshed FE model with boundary condition
试件 $P_{\rm{u}}^{'} $/kN $P_{\rm{u}}^{'} $/Pu δ′/mm δ′/δ 破坏模式
A1 233.16 1.03 7.61 1.23 拔出破坏(√)
A2 241.55 0.99 10.94 0.78 拉断破坏(√)
B1 241.09 0.99 11.98 0.96 拔出破坏(√)
B2 241.30 0.98 10.22 0.74 拉断破坏(√)
C1 241.74 0.98 11.66 1.03 拉断破坏(×)
C2 256.57 0.97 12.46 0.76 拉断破坏(√)
Tab.4 Comparison between results of finite element analysis and experimental results of spliced specimens
Fig.9 Nephograms of rebar Von Mises strain at failure moment
Fig.10 Comparison of load-displacement curves between results of FE analyses and experiments
Fig.11 Comparison of rebar axial strain distribution between results of FE analysis and experiments
Fig.12 Comparison of sleeve axial strain distribution between results of FE analysis and experiments
Fig.13 Diagram of rebar mechanical interlocking effect
Fig.14 Cracking pattern of grout material
Fig.15 Principal strain nephogram of grout in specimen A1
Fig.16 Principal strain nephogram of grout in specimen A2
Fig.17 Free body diagram for radial confinement of sleeve
Fig.18 Transverse strain distribution of sleeve
[1]   中华人民共和国住房和城乡建设部. 钢筋套筒灌浆连接应用技术规程: JGJ355-2015 [S]. 北京: 中国建筑工业出版社, 2015.
[2]   ZHENG Y, GUO Z, LIU J, et al Performance and confining mechanism of grouted deformed pipe splice under tensile load[J]. Advances in Structural Engineering, 2016, 19 (1): 86- 103
[3]   HAYASHI Y, SHIMIZU R, NAKATSUKA T, et al Bond stress-slip characteristics of reinforcing bars in grout-filled coupling steel sleeves[J]. Journal of Structural and Construction Engineering: Transactions of Architectural Institute of Japan, 1994, 59 (462): 131- 139
doi: 10.3130/aijs.59.131_3
[4]   HAYASHI Y, SHIMIZU R, NAKATSUKA T, et al Mechanical characteristics of grout-filled coupling sleeves of electric resistance welded steel tube under uniaxial tensile loads[J]. Concrete Research and Technology, 1994, 5 (2): 65- 75
[5]   罗小勇, 龙昊, 曹琨鹏 灌浆套筒连接装配式梁柱节点精细有限元模型[J]. 哈尔滨工程大学学报, 2021, 42 (5): 641- 648
LUO Xiao-yong, LONG Hao, CAO Kun-peng High-precision finite element model of prefabricated reinforced concrete beam-column joint with grout sleeve[J]. Journal of Harbin Engineering University, 2021, 42 (5): 641- 648
[6]   YANG C, ZHANG L, ZHANG Z, et al Effective stress-strain relationship for grouted sleeve connection: modeling and experimental verification[J]. Engineering Structures, 2020, 210: 110300
[7]   王宁, 车文鹏, 武立伟, 等 新型12mm钢筋灌浆套筒连接力学性能试验研究及有限元分析[J]. 工业建筑, 2019, 49 (4): 81- 87
WANG Ning, CHE Wen-peng, WU Li-wei, et al Experimental research and finite element analysis of the mechanical properties of 12 millimeter steel bar grouting sleeve connection[J]. Industrial Construction, 2019, 49 (4): 81- 87
[8]   ELIYA H, MORCOUS G Non-proprietary bar splice sleeve for precast concrete construction[J]. Engineering Structures, 2015, 83: 154- 162
[9]   LIU C, PAN L, LIU H, et al Experimental and numerical investigation on mechanical properties of grouted-sleeve splices[J]. Construction and Building Materials, 2020, 260: 120441
doi: 10.1016/j.conbuildmat.2020.120441
[10]   郑永峰, 郭正兴 变形灌浆套筒连接性能试验研究及有限元分析[J]. 建筑结构学报, 2016, 37 (3): 94- 102
ZHENG Yong-feng, GUO Zheng-xing Experimental study and finite element analysis on behavior of deformed grout-filled pipe splice[J]. Journal of Building Structures, 2016, 37 (3): 94- 102
[11]   赵军, 杜彦兵, 朱万旭, 等 灌浆套筒连接构件的有限元分析[J]. 混凝土, 2019, (10): 150- 154
ZHAO Jun, DU Yan-bing, ZHU Wan-xu, et al Finite element analysis of grouting coupler connection member[J]. Concrete, 2019, (10): 150- 154
[12]   赵军, 刘佳, 王飞程, 等 装配式新型灌浆套筒接头设计及有限元分析[J]. 三峡大学学报: 自然科学版, 2021, 43 (6): 56- 62
ZHAO Jun, LIU Jia, WANG Fei-cheng, et al Design and finite element analysis of assembled grouted deformed pipe splice[J]. Journal of China Three Gorges University: Natural Sciences, 2021, 43 (6): 56- 62
[13]   WU M, LIU H, DU X Effect of tapered head sleeve structural parameters on grouting connection joints deformation[J]. Journal of Materials in Civil Engineering, 2020, 32 (5): 4020083
doi: 10.1061/(ASCE)MT.1943-5533.0003174
[14]   LING J H, LIEW Y F, LEONG W K, et al Modelling the response of tapered head sleeve connection under tensile load using finite element method[J]. Asian Journal of Civil Engineering, 2017, 18 (5): 837- 852
[15]   张彬. 基于钢筋套筒灌浆料连接数值模拟及分析 [D]. 西安: 长安大学, 2017.
ZHANG Bin. Numerical simulation and analysis on the connection of grout sleeve splicing for rebars [D]. Xi’an: Chang’an University, 2017.
[16]   孙泽阳, 孙运楼, 郑忆, 等 考虑表面肋参数的钢-连续纤维复合筋与灌浆套筒界面性能研究[J]. 中国公路学报, 2022, 35 (2): 269- 278
SUN Ze-yang, SUN Yun-lou, ZHENG Yi, et al Study on bond performance between steel-FRP (fiber reinforced polymer) composite bars and grouted sleeves considering influence of surface ribs[J]. China Journal of Highway and Transport, 2022, 35 (2): 269- 278
[17]   唐林. 单向拉伸荷载下新型套筒灌浆连接长度试验研究 [D]. 沈阳: 沈阳建筑大学, 2017.
TANG Lin. Experimental study on the anchorage length of a new-type grouted pipe splice under incremental tensile load [D]. Shenyang: Shenyang Jianzhu University, 2017.
[18]   国家质量技术监督局. 水泥胶砂强度检验方法: GB/T 17671—1999 [S]. 北京: 国家质量技术监督局, 1999.
[19]   YUN X, GARDNER L Stress-strain curves for hot-rolled steels[J]. Journal of Constructional Steel Research, 2017, 133: 36- 46
[20]   DIANA FEA BV. User’s manual-release 10.3-material library [EB/OL]. 2019-03-01. https://dianafea.com/manuals/d102/Diana.html.
[21]   中华人民共和国国家质量监督检验检疫总局. 钢筋混凝土用钢第2部分: 热轧带肋钢筋 (ISO 6935-2 : 2015): GB/T 1499.2-2018 [S]. 北京: 中国标准出版社, 2018.
[22]   DIANA FEA BV. User's manual-release 10.3-element library[EB/OL]. 2019-03-01. https://dianafea.com/manuals/d102/Diana.html.
[23]   高强, 赵唯坚 单向拉伸荷载下堆焊成型套筒灌浆连接性能试验研究[J]. 建筑结构学报, 2020, 43 (4): 208- 219
GAO Qiang, ZHAO Wei-jian Experimental study on connection performance of grouted welded sleeve under uniaxial tensile load[J]. Journal of Building Structures, 2020, 43 (4): 208- 219
[24]   林红威, 赵羽习 变形钢筋与混凝土黏结性能研究综述[J]. 建筑结构学报, 2019, 40 (1): 11- 27
LIN Hong-wei, ZHAO Yu-xi Bond behavior between concrete and deformed steel bar: a review[J]. Journal of Building Structures, 2019, 40 (1): 11- 27
[1] Ting-guo CHEN,Zhao-di GUO. Stability of axial compression bars with inter-bar torsional constraints[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 598-605.
[2] Cai-xia LIU,Ting-ting PAN,Yi-fan SUN,Shuai LI,Ping LIU,Ying HUANG. Segmented pneumatic soft actuator for rehabilitation training[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1127-1134.
[3] Yu-liang HE,Zhi-wen CHEN,Xiao-wei YE,Zhi-cheng ZHANG. Corrosion-fatigue coupling calculation model of steel bridge and its influencing factor analysis[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2463-2470.
[4] Chao ZHANG,Zheng-dong HUANG,Zhong-ming XIONG,Xiao-lu YUAN,You-jun XU,Jia-wang KANG. Seismic response of reinforced concrete frame structure in ground fissures area[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2028-2036.
[5] Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.
[6] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[7] Xing-yu ZENG,Jun-yang LI,Jia-xu WANG,Ting TANG,Cong LI. Design and modification of harmonic double circular arc tooth profile based on finite element method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1548-1557.
[8] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.
[9] Jun-xia JIANG,Hai-peng LIAO. Stiffness modeling and structure optimization of heavy-duty intelligent stacking equipment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1948-1959.
[10] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[11] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[12] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[13] Yong CHEN,Yong-quan LI,Chong-lei XIE,Kuang-liang QIAN,Ye-sheng ZHANG,Peng-yun CHENG,Xuan-zuo YE. Pushover test study of masonry structure restrained by steel-tube-bundle shear walls[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 499-511.
[14] Xiao-wei LIAO,Yuan-qing WANG,Jian-guo WU,Yong-jiu SHI. Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2018-2026.
[15] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.