Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (12): 2463-2470    DOI: 10.3785/j.issn.1008-973X.2022.12.015
    
Corrosion-fatigue coupling calculation model of steel bridge and its influencing factor analysis
Yu-liang HE1(),Zhi-wen CHEN1,Xiao-wei YE2,*(),Zhi-cheng ZHANG2
1. School of Civil Engineering, Shaoxing University, Shaoxing 312000, China
2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1102KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A two-stage corrosion-fatigue coupling calculation model was established considering the corrosion fatigue coupling effect of steel bridges, in order to study the fatigue performance of steel bridges under the combined action of traffic load and corrosive environment. In the stage of pitting, the acceleration effect of cyclic traffic load on the corrosion process was considered. In the stage of crack propagation, the corrosion acceleration factor of crack growth was introduced, and the influence of corrosion environment on crack growth was considered. The corrosion fatigue life calculation example of welded joints of top plate and longitudinal rib of steel bridge shows that the fatigue strength considering corrosion fatigue coupling decreases by 41.25%, 28.80%, 44.60% and 10.90% respectively compared with fatigue test, code AASHTO, code BS5400 and no corrosion fatigue coupling. In addition, a comparative study was carried out on the influence factors of the established model, such as loading frequency, corrosion environment, and corrosion pit morphology. Results show that the corrosion fatigue strength of welded joints increases with the increase of loading frequency, and the corrosion fatigue strength is close when the loading frequency is greater than 0.6 Hz. With the corrosion environment becoming stronger, the corrosion current and corrosion rate gradually increase. The corrosion fatigue strength increases with the increase of corrosion pit morphology.



Key wordssteel bridge      corrosion-fatigue model      coupling effect      pitting      crack propagation     
Received: 09 October 2021      Published: 03 January 2023
CLC:  U 441  
Fund:  国家自然科学基金资助项目(51822810, 51778574);浙江省自然科学基金资助项目(LR19E080002);浙江省建设科技资助项目(2020K127);绍兴市产业关键技术公关计划项目(2022026001)
Corresponding Authors: Xiao-wei YE     E-mail: hyliang88888@163.com;cexwye@zju.edu.cn
Cite this article:

Yu-liang HE,Zhi-wen CHEN,Xiao-wei YE,Zhi-cheng ZHANG. Corrosion-fatigue coupling calculation model of steel bridge and its influencing factor analysis. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2463-2470.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.12.015     OR     https://www.zjujournals.com/eng/Y2022/V56/I12/2463


钢桥腐蚀-疲劳耦合计算模型及影响因素分析

为了研究钢桥在交通荷载和腐蚀环境共同作用下的疲劳性能,考虑钢桥腐蚀-疲劳耦合效应,建立有2个阶段的腐蚀-疲劳耦合计算模型. 在点蚀坑萌生阶段,考虑循环交通荷载对腐蚀过程的加速作用;在裂纹扩展阶段,引入裂纹扩展腐蚀加速因子,考虑腐蚀环境对裂纹扩展的影响. 对钢桥顶板和纵肋焊接节点的腐蚀疲劳寿命算例分析表明:考虑腐蚀-疲劳耦合作用的疲劳强度相对于疲劳试验、规范AASHTO、规范BS5400和不考虑腐蚀-疲劳耦合作用的情况,分别降低41.25%、28.80%、44.60%和10.90%. 对所建模型开展加载频率、腐蚀环境、腐蚀坑形貌特征等影响因素的比较研究,结果表明:随着加载频率的增加,焊接节点的腐蚀疲劳强度递增,当加载频率大于0.6 Hz时,焊接节点的腐蚀疲劳强度相近;随着腐蚀环境变强,腐蚀电流和腐蚀速率逐渐增大;腐蚀疲劳强度随着腐蚀坑形貌特征的增大而增大.


关键词: 钢桥,  腐蚀-疲劳模型,  耦合效应,  点蚀,  裂纹扩展 
Fig.1 Schematic diagram of corrosion-fatigue coupling mechanism
Fig.2 Diagram of welded joint of top plate and longitudinal U-rib
参数 数值
释放电子数n 2
法拉第常数F/(C·mol?1) 96500
材料密度ρ/(kg·m?3) 7850
摩尔质量M/(kg·mol?1) 56×10?3
点蚀电流系数Ip0/(C·mol?1) 1.0×10?7
单位体积活化能变化量ΔH/(J·mol?1) 15.5×103
气体常数R/(J·mol?1·K?1) 8.314
绝对温度T/ K 293
Tab.1 Parameter values of pitting initiation stage[11]
Fig.3 Stress-life curves of steel bridge fatigue under different conditions
Fig.4 Corrosion-fatigue stress-life curves under different loading frequencies
Fig.5 Corrosion-fatigue stress-life curves under different corrosive environments
Fig.6 Fatigue strength of corrosion pits with different corrosion pit morphology under different loading frequencies
Fig.7 Corrosion fatigue stress-life curves of corrosion pits with different corrosion pit morphology under different loading frequencies
[1]   NI Y Q, YE X W, KO J M Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application[J]. Journal of Structural Engineering, 2010, 136 (12): 1563- 1573
doi: 10.1061/(ASCE)ST.1943-541X.0000250
[2]   叶肖伟, 傅大宝, 倪一清, 等 考虑多因素共同作用的钢桥焊接节点疲劳可靠度评估[J]. 土木工程学报, 2013, 46 (10): 89- 99
YE Xiao-wei, FU Da-bao, NI Yi-qing, et al Fatigue reliability assessment of welded joints in steel bridge considering multiple effects[J]. China Civil Engineering Journal, 2013, 46 (10): 89- 99
doi: 10.15951/j.tmgcxb.2013.10.009
[3]   王春生, 翟慕赛, HOUANKPO T O N 正交异性钢桥面板典型细节疲劳强度研究[J]. 工程力学, 2020, 37 (8): 102- 111
WANG Chun-sheng, ZHAI Mu-sai, HOUANKPO T O N Study on fatigue strength of typical details of orthogonally heterosexual steel bridge panels[J]. Engineering Mechanics, 2020, 37 (8): 102- 111
doi: 10.6052/j.issn.1000-4750.2019.09.0518
[4]   张清华, 卜一之, 李乔, 等 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30 (3): 14- 30
ZHANG Qing-hua, BU Yi-zhi, LI Qiao Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30 (3): 14- 30
doi: 10.3969/j.issn.1001-7372.2017.03.002
[5]   张清华, 李俊, 袁道云, 等 深圳至中山跨江通道钢桥面板结构疲劳试验研究[J]. 土木工程学报, 2013, 53 (11): 102- 115
ZHANG Qing-hua, LI Jun, YUAN Dao-yun, et al Fatigue model tests of orthotropic steel bridge deck of Shenzhen-Zhongshan Link[J]. China Civil Engineering Journal, 2013, 53 (11): 102- 115
doi: 10.15951/j.tmgcxb.2020.11.011
[6]   王春生, 刘鑫, 俞欣, 等 基于无损探测信息的既有钢桥构件疲劳可靠度更新评估[J]. 土木工程学报, 2010, 43 (8): 81- 87
WANG chun-sheng, LIU Xin, YU Xin, et al Fatigue reliability updating evaluation using nondestructive inspections for existing steel bridges[J]. China Civil Engineering Journal, 2010, 43 (8): 81- 87
doi: 10.15951/j.tmgcxb.2010.08.006
[7]   FISHER J W, BARSOM J M Evaluation of cracking in the rib-to-deck welds of the Bronx-Whitestone Bridge[J]. Journal of Bridge Engineering, 2016, 21 (3): 04015065
doi: 10.1061/(ASCE)BE.1943-5592.0000823
[8]   ZMETRA K M, MCUMLLEN K F, ZAGHI A E, et al Experimental study of UHPC repair for corrosion-damaged steel girder ends[J]. Journal of Bridge Engineering, 2017, 22 (8): 04017037
[9]   LI L, MAHMOODIAN M, LI C Q, et al Effect of corrosion and hydrogen embrittlement on microstructure and mechanical properties of mild steel[J]. Construction and Building Materials, 2018, 170 (5): 78- 90
[10]   CALDERON-URISZAR-ALDACA I, BRIZ E, BIEZMA M V, et al A plain linear rule for fatigue analysis under natural loading considering the coupled fatigue and corrosion effect[J]. International Journal of Fatigue, 2019, 122: 141- 151
doi: 10.1016/j.ijfatigue.2019.01.008
[11]   ZHANG Y, ZHENG K, HENG J, et al Corrosion-fatigue evaluation of uncoated weathering steel bridges[J]. Applied Sciences, 2019, 9 (17): 3461
[12]   GUO Z, MA Y, WANG L, et al Modelling guidelines for corrosion-fatigue life prediction of concrete bridges: considering corrosion pit as a notch or crack[J]. Engineering Failure Analysis, 2019, 105 (11): 883- 895
[13]   CUI C J, CHEN A R, MA R J An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment[J]. International Journal of Fatigue, 2020, 135 (6): 105540
[14]   孙宾. 损伤跨尺度演化致结构失效过程的模拟和分析方法[D]. 南京: 东南大学, 2016 : 1-16.
SUN Bin. Simulation and analysis method of failure process of engineering structures due to trans-scale damage evolution [D]. Nanjing : Southeast University, 2016 : 1-16.
[15]   DENG L, YAN W, NIE L A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect[J]. Engineering Structures, 2019, 178 (1): 309- 317
[16]   LIU Z X, GUO T, HEBDON M H, et al Corrosion fatigue analysis and reliability assessment of short suspenders in suspension and arch bridges[J]. Journal of Performance of Constructed Facilities, 2018, 32 (5): 04018060
[17]   YANG D H, YI T H, LI H N Coupled fatigue-corrosion failure analysis and performance assessment of RC bridge deck slabs[J]. Journal of Bridge Engineering, 2017, 22 (10): 04017077
[18]   JIE Z, LI Y, WEI X, et al Fatigue life prediction of welded joints with artificial corrosion pits based on continuum damage mechanics[J]. Journal of Constructional Steel Research, 2018, 148 (9): 542- 550
[19]   YANG S, YANG H, LIU G, et al Approach for fatigue damage assessment of welded structure considering coupling effect between stress and corrosion[J]. International Journal of Fatigue, 2016, 88 (7): 88- 95
[20]   MAO M, ZHANG X, TU S, et al Prediction of crack initiation life due to corrosion pits[J]. Journal of Aircraft, 2015, 51 (3): 805- 810
[21]   LI S X, AKID R Corrosion fatigue life prediction of a steel shaft material in seawater[J]. Engineering Failure Analysis, 2013, 34 (8): 324- 334
[22]   SHI P, MAHADEVAN S Corrosion fatigue and multiple site damage reliability analysis[J]. International Journal of Fatigue, 2003, 25 (6): 457- 469
doi: 10.1016/S0142-1123(03)00020-3
[23]   梁彩凤, 侯文泰 碳钢、低合金钢16年大气暴露腐蚀研究[J]. 中国腐蚀与防护学报, 2005, (1): 2- 7
LIANG Cai-feng, HOU Wen-tai Sixteen-year atmospheric corrosion exposure study of steels[J]. Journal of Chinese Society for Corrosion and Protection, 2005, (1): 2- 7
doi: 10.3969/j.issn.1005-4537.2005.01.001
[24]   曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2004.
[25]   BS7608: guide to fatigue design and assessment of steel products [S]. London: British Standards Institution, 2014.
[26]   BS7910 : guide to methods for assessing the acceptability of flaws in metallic structures [S]. London: British Standards Institution, 2013.
[27]   BS5400: steel, concrete and composite bridges, part 10: code of practice for fatigue [S]. London: British Standards Institution, 1980 .
[28]   赵欣欣, 刘晓光, 潘永杰, 等 正交异性钢桥面板纵肋腹板与面板连接构造的疲劳试验研究[J]. 中国铁道科学, 2013, 34 (2): 41- 45
ZHAO Xin-xin, LIU Xiao-guang, PAN Yong-jie, et al Fatigue test study on the joint structure between the deck and longitudinal rib web of orthotropic steel bridge deck[J]. China Railway Science, 2013, 34 (2): 41- 45
doi: 10.3969/j.issn.1001-4632.2013.02.08
[29]   AASHTO. LRFD: bridge design specification [S]. 3rd edition. Washington, DC: American Association of State Highway and Transportation Officials, 2004.
[1] Xiao-wei LIAO,Yuan-qing WANG,Jian-guo WU,Yong-jiu SHI. Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2018-2026.
[2] QIN Hong-yuan, LIU Yi-ming, HUANG Dan. Peridynamic modelling and simulation for multiple crack propagation in brittle materials[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 497-503.
[3] SONG Fang-yuan, XIE Xu. Effect analysis of corrosion on low cycle fatigue behavior of structural steel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2285-2294.
[4] ZHANG Ming-kui, CHENG Wen-ming, LIU Fang. Coupling effect between load characteristics and joint driving characteristics of powered exoskeleton[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 807-816.
[5] LI Ming, LIU Yang, TANG Xue-song. Trans-scale analysis for fatigue crack[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 524-531.
[6] LIAO Xiao wei, WANG Yuan qing, ZONG Liang, SHI Gang. Fatigue analysis of typical welded joints of steel bridges using effective notch stress approach[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 1-8.
[7] TU Zhi bin, HUANG Ming feng,LOU Wen juan. Extreme load effects on bridge towerbasement system due to joint actions of wind and wave[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 813-821.
[8] WANG Tong, XIE Xu, TANG Zhan-zhan, SHEN Chi. Modified two-surface steel hysteretic model considering complex strain history[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1305-1312.
[9] DI Sheng-kui, WEN Cheng, YE Xiao-wei. Finite element analysis of structural hot-spot stress for orthotropic steel bridge deck[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 225-231.
[10] WANG Jiu gen,FENG Lan lan,LI Yang. Influences of surface topography on electrical pitting[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2025-2032.
[11] LI Yi-min,HAO Zhi-yong,DU Ji-sheng. Study of coupling dynamics between crankshaft and
timing drive system of engine
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1650-1657.
[12] DING Yong, XIE Xu, GOU Chan-ghuan, HUANG Jian-yuan. Research on computational method and dynamic characteristics of
traffic vibration of steel bridge
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1107-1114.
[13] LI Wei, XUE Meng-De, XIANG Zhi-Hai. Thermal-dynamic stability analysis of structural appendages attached to satellite[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(7): 1288-1292.
[14] YANG Xin-Wang, BI Guo-Li, ZHANG Xue, et al. Path iterative method for laser-controlled crack propagation and its convergence[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(11): 2043-2047.