Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (12): 2454-2462    DOI: 10.3785/j.issn.1008-973X.2022.12.014
    
Microstructure of early-age calcium sulphoaluminate and ordinary Portland cement paste cured under different CO2 pressures
Yan LAN1(),Qi GU1,Yu PENG1,Qiang ZENG1,*(),Zhidong ZHANG2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Institute for Building Materials, ETH Zurich, Zurich 8092, Switzerland
Download: HTML     PDF(1825KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Carbonation process of calcium sulphoaluminate and ordinary Portland cement (CSA-OPC) paste under different carbon curing pressures at early age was investigated. X-ray diffraction, infrared spectroscopy, thermogravimetry, mercury intrusion porosimetry, and scanning electron microscopy were used to characterize the phase composition and microstructure of the paste before and after carbonation. Experimental results show that ettringite is the main hydration product of the CSA-OPC paste. After carbonation, ettringite is converted to calcium carbonate and calcium sulfate crystals. Calcium carbonate exists in three crystal forms in the paste, among which calcite is the main crystal. In addition, hemi-carbonate calcium sulfoaluminate hydrates (Hc-AFm) transfers to mono-carbonate calcium sulfoaluminate hydrates (Mc-AFm) after carbon curing. Carbonation degree and depth increase with the carbonation pressure. CSA-OPC hydration products’ volume decreases after carbonation, resulting in the increased total porosity and loose pore structure. The findings explore the microstructure alteration of CSA-OPC under early-age carbon curing, and provide a technique route for the fabrication of carbon-sinking materials based on calcium sulphoaluminate cement.



Key wordssulphoaluminate cement      ettringite      carbonation      microstructure     
Received: 12 January 2022      Published: 03 January 2023
CLC:  TU 525  
Fund:  浙江大学教育基金会浙江大学-世界顶尖大学合作计划基金资助
Corresponding Authors: Qiang ZENG     E-mail: 22112049@zju.edu.cn;cengq14@zju.edu.cn
Cite this article:

Yan LAN,Qi GU,Yu PENG,Qiang ZENG,Zhidong ZHANG. Microstructure of early-age calcium sulphoaluminate and ordinary Portland cement paste cured under different CO2 pressures. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2454-2462.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.12.014     OR     https://www.zjujournals.com/eng/Y2022/V56/I12/2454


不同CO2养护压力下硫铝酸盐和硅酸盐水泥浆体早期微观结构

研究硫铝酸盐和硅酸盐水泥(CSA-OPC)浆体在不同碳养护压力下的早期碳化过程,通过X射线衍射、红外光谱、热重、压汞和扫描电镜等测试方法,表征碳化前后水泥浆体的物相组成和微观结构. 实验结果表明,CSA-OPC浆体的水化产物主要为钙矾石,碳化作用使钙矾石转变为碳酸钙和硫酸钙晶体;水泥中碳酸钙以3种晶型存在,其中方解石为主要存在形式. 碳化使半碳型的水化硫铝酸钙(Hc-AFm相)逐渐转化为单碳型的水化硫铝酸钙(Mc-AFm相),碳化程度和碳化深度随着碳化压力的增加而递增. 碳化后CSA-OPC水化产物体积减小,样品总孔隙率增大、孔隙结构变疏松. 研究结果阐明了CSA-OPC浆体在早期碳化养护条件下的微结构变化过程,为制备基于硫铝酸盐水泥的高效碳汇材料提供了技术支撑.


关键词: 硫铝酸盐水泥,  钙矾石,  碳化,  微结构 
水泥类别 wB wLOI wT
SiO2 Al2O3 Fe2O3 CaO SO3 MgO TiO2
%
CSA 16.19 17.62 4.30 47.14 8.98 3.48 0.46 1.22 99.39
OPC 23.13 5.63 3.39 60.63 3.70 1.88 ? 1.12 99.48
Tab.1 Chemical composition of cement
Fig.1 Particle size distribution curves of calcium sulphoaluminate cement and ordinary Portland  cement
组别 m0/g m1/g Δm/g F/%
对照 14.60 13.31 1.29 50.1
0.05 MPa 14.90 13.70 1.20 51.6
0.5 MPa 14.62 13.39 1.23 52.3
Tab.2 Mass of calcium sulphoaluminate and ordinary Portland cement samples before and after drying
Fig.2 Schematic illustration of home-made concrete carbonation reactor
Fig.3 Carbonation depth of calcium sulphoaluminate and ordinary Portland cement paste under different carbonation pressures
Fig.4 X-ray diffraction results of calcium sulphoaluminate and ordinary  Portland cement samples
晶型 v1 v2 v3 v4
cm?1
非晶型 1 067 864/866 1 490/1 475 725
V型 1 089 877/878 1 487/1 490 746
A型 1 083 854/856 1 488/1 490 713
C型 877/876 1 420 713
Tab.3 Vibration frequencies of different calcium carbonate phases in infrared spectra
Fig.5 Infrared spectra of calcium sulphoaluminate and ordinary Portland cement samples
Fig.6 Thermogravimetric analysis curves of calcium sulphoaluminate and ordinary Portland cement samples
Fig.7 Mass fraction of phase thermogravimetric analysis curves
Fig.8 Scanning electron microscopy images and energy spectrum of calcium sulphoaluminate and ordinary Portland cement samples
Fig.9 Pore size distribution curves of calcium sulphoaluminate and ordinary Portland cement samples
Fig.10 Compressive strength changes of calcium sulphoaluminate and ordinary Portland cement samples after carbonation
Fig.11 Carbonation mechanisms in calcium sulphoaluminate and ordinary Portland cement paste
[1]   MILLER S A, HORVATH A, MONTEIRO P J M Impacts of booming concrete production on water resources worldwide[J]. Nature Sustainability, 2018, 1: 69- 76
doi: 10.1038/s41893-017-0009-5
[2]   SHARP J H, LAWRENCE C D, YANG R Calcium sulfoaluminate cements: low-energy cements, special cements or what?[J]. Advances in Cement Research, 1999, 11 (1): 3- 13
[3]   MILLER S A, MYERS R J Environmental impacts of alternative cement binders[J]. Environmental Science and Technology, 2020, 54 (2): 677- 686
doi: 10.1021/acs.est.9b05550
[4]   XI F M, DAVIS S J, CIAIS P, et al Substantial global carbon uptake by cement carbonation[J]. Nature Geoscience, 2016, 9: 880- 883
doi: 10.1038/ngeo2840
[5]   GUO X L Calcium sulfoaluminate (CSA) blended cements[J]. Magazine of Concrete Research, 2016, 68 (4): 208- 215
doi: 10.1680/macr.15.00123
[6]   QUILLIN K Performance of belite–sulfoaluminate cements[J]. Cement and Concrete Research, 2001, 31 (9): 1341- 1349
doi: 10.1016/S0008-8846(01)00543-9
[7]   NDIAYE K, CYR M, GINESTET S Durability and stability of an ettringite-based material for thermal energy storage at low temperature[J]. Cement and Concrete Research, 2017, 99: 106- 115
doi: 10.1016/j.cemconres.2017.05.001
[8]   BUI H, BOUTOUIL M, LEVACHER D, et al Evaluation of the influence of accelerated carbonation on the microstructure and mechanical characteristics of coconut fibre-reinforced cementitious matrix[J]. Journal of Building Engineering, 2021, 39: 102269
doi: 10.1016/j.jobe.2021.102269
[9]   WANG W K, WEI X C, CAI X H, et al Mechanical and microstructural characteristics of calcium sulfoaluminate cement exposed to early-age carbonation curing[J]. Materials, 2021, 14 (13): 3515
doi: 10.3390/ma14133515
[10]   CHEN T F, GAO X J, QIN L Mathematical modeling of accelerated carbonation curing of Portland cement paste at early age[J]. Cement and Concrete Research, 2019, 120: 187- 197
doi: 10.1016/j.cemconres.2019.03.025
[11]   SHARMA D, GOYAL S Accelerated carbonation curing of cement mortars containing cement kiln dust: an effective way of CO2 sequestration and carbon footprint reduction [J]. Journal of Cleaner Production, 2018, 192: 844- 854
doi: 10.1016/j.jclepro.2018.05.027
[12]   EI-HASSAN H, SHAO Y X Early carbonation curing of concrete masonry units with Portland limestone cement[J]. Cement and Concrete Composites, 2015, 62: 168- 177
doi: 10.1016/j.cemconcomp.2015.07.004
[13]   ZHANG J J, LI G X, YE W T, et al Effects of ordinary Portland cement on the early properties and hydration of calcium sulfoaluminate cement[J]. Construction and Building Materials, 2018, 186: 1144- 1153
doi: 10.1016/j.conbuildmat.2018.08.008
[14]   SAOÛT G L, LOTHENBACH B, HORI A, et al Hydration of Portland cement with additions of calcium sulfoaluminates[J]. Cement and Concrete Research, 2013, 43: 81- 94
doi: 10.1016/j.cemconres.2012.10.011
[15]   TRAUCHESSEC R, MECHLING J, LECOMTE A, et al Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends[J]. Cement and Concrete Composites, 2015, 56: 106- 114
doi: 10.1016/j.cemconcomp.2014.11.005
[16]   LUGE C, MARUYAMA I, REN Y Novel accelerated test method for RH dependency of steel corrosion in carbonated mortar[J]. Journal of Advanced Concrete Technology, 2021, 19 (3): 207- 215
doi: 10.3151/jact.19.207
[17]   ZHANG Z D, SCHERER G W Evaluation of drying methods by nitrogen adsorption[J]. Cement and Concrete Research, 2019, 120: 13- 26
doi: 10.1016/j.cemconres.2019.02.016
[18]   卢豹. 硅酸盐水泥CO2养护及后续水化研究[D]. 长沙: 湖南大学, 2020.
LU Bao. The hardening behaviour of CO2-cured Portland cement and post hydration [D]. Changsha: Hunan University, 2020.
[19]   MEHDIZADEH H, JIA X X, MO K H, et al Effect of water-to-cement ratio induced hydration on the accelerated carbonation of cement pastes[J]. Environmental Pollution, 2021, 280: 116914
doi: 10.1016/j.envpol.2021.116914
[20]   SKOCEK J, ZAJAC M, BEN HAHA M Carbon capture and utilization by mineralization of cement pastes derived from recycled concrete[J]. Scientific Reports, 2020, 10: 5614
doi: 10.1038/s41598-020-62503-z
[21]   STEINER S, LOTHENBACH B, PROSKE T, et al Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite[J]. Cement and Concrete Research, 2020, 135: 106116
doi: 10.1016/j.cemconres.2020.106116
[22]   GASTALDI D, BERTOLA F, CANONICO F, et al A chemical/mineralogical investigation of the behavior of sulfoaluminate binders submitted to accelerated carbonation[J]. Cement and Concrete Research, 2018, 109: 30- 41
doi: 10.1016/j.cemconres.2018.04.006
[23]   SEO J, KIM S, PARK S, et al Carbonation of calcium sulfoaluminate cement blended with blast furnace slag[J]. Cement and Concrete Composites, 2021, 118: 103918
doi: 10.1016/j.cemconcomp.2020.103918
[24]   ZHANG D, LI V C, ELLIS B R Ettringite-related dimensional stability of CO2-cured Portland [J]. ACS Sustainable Chemistry and Engineering, 2019, 7: 16310- 16319
doi: 10.1021/acssuschemeng.9b03345
[25]   HARGIS C W, LOTHENBACH B, MÜLLER C J, et al Carbonation of calcium sulfoaluminate mortars[J]. Cement and Concrete Composites, 2017, 80: 123- 134
doi: 10.1016/j.cemconcomp.2017.03.003
[26]   CHEN B, HORGNIES M, HUET B, et al Comparative kinetics study on carbonation of ettringite and meta-ettringite based materials[J]. Cement and Concrete Research, 2020, 137: 106209
doi: 10.1016/j.cemconres.2020.106209
[27]   MOFFATT E G. Durability of rapid-set (ettringite-based) binders [D]. [S. l.]: University of New Brunswick, 2016.
[28]   张玲峰, 韩建德, 刘伟庆, 等 碳化导致水泥基材料微观结构演变的研究进展[J]. 材料导报, 2015, 29 (3): 85- 95
ZHANG Ling-feng, HAN Jian-de, LIU Wei-qing, et al Microstructure evolution of cement-based materials caused by carbonation reaction: a review[J]. Materials Reports, 2015, 29 (3): 85- 95
[29]   吴萌, 姬永生, 张领雷, 等 石膏对碳硫硅钙石型硫酸盐破坏的影响[J]. 硅酸盐学报, 2016, 44 (11): 1571- 1578
WU Meng, JI Yong-sheng, ZHANG Ling-lei, et al Effect of gypsum on thaumasite form of sulfate attack[J]. Journal of the Chinese Ceramic Society, 2016, 44 (11): 1571- 1578
doi: 10.14062/j.issn.0454-5648.2016.11.05
[30]   NEHDI M, MINDESS S, AÏTCIN P-C Optimization of high strength limestone filler cement mortars[J]. Cement and Concrete Research, 1996, 26 (6): 883- 893
doi: 10.1016/0008-8846(96)00071-3
[31]   MESBAH A, CAU-DIT-COUMES C, RENAUDIN G, et al Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate[J]. Cement and Concrete Research, 2012, 42 (8): 1157- 1165
doi: 10.1016/j.cemconres.2012.05.012
[32]   JOHANNESSON B, UTGENANNT P Microstructural changes caused by carbonation of cement mortar[J]. Cement and Concrete Research, 2001, 31 (6): 925- 931
doi: 10.1016/S0008-8846(01)00498-7
[1] Xing-bo HAN,Fei YE,Xiao-ming LIANG,Hao-lan FENG,Lei WANG,Yong-xu XIA. Carbonation resistance zonation of reinforced concrete lining of road tunnels[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1436-1443.
[2] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[3] Dong-ming YAN,Zhi-hao HUANG,Gong CHEN,Hao QIAN,Jia-hua DENG,Yi LIU. Study on corrosion resistance of low-temperature sintered chemically reactive enamel coated rebars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 56-63.
[4] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[5] Xian-tai JI,Shi-feng WEN,Qing-song WEI,Yan ZHOU,Zhi-ping CHEN. Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 664-670.
[6] Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.
[7] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1849-1854.
[8] XU Ri-qing, XU Li-yang, DENG Yi-wen, ZHU Yi-hong. Experimental study on soft clay contact area based on SEM and IPP[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1417-1425.
[9] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1345-1352.
[10] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 0-07.
[11] WANG Hai-long, DONG Yi-sen, SUN Xiao-yan, JIN Wei-liang. Damage mechanism of concrete deteriorated by sulfate attack
in wet-dry cycle environment
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1255-1261.
[12] WANG Xin-fei, HUANG Zhi-yi, LIU Zhuo, ZHU Xing-yi, XU-Wei. Analysis of distribution properties of coarse aggregates in HMA
based on delaunay triangulation
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 263-268.
[13] HU Jun, ZHONG Li-jun, NI Zhe-ming. Effects of microstructure on temperature dependence of
permeability of NiCuZn ferrites
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2416-2420.