Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (4): 664-670    DOI: 10.3785/j.issn.1008-973X.2019.04.007
    
Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting
Xian-tai JI1(),Shi-feng WEN1,*(),Qing-song WEI1,Yan ZHOU1,2,Zhi-ping CHEN3
1. State Key Laboratory of Materials Processing and Die and Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
3. Guangdong Kelon Mould Limited Company, Foshan 528303, China
Download: HTML     PDF(1114KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The quenching treatment was conducted to S136 mould steel fabricated by selective laser melting (SLM) in order to improve the properties. The effect of quenching treatment on the microstructure, hardness and anti-corrosion properties was analyzed via X-ray diffraction (XRD) and scanning electron microscope (SEM). Results showed that the microstructure of S136 mould steel fabricated by selective laser melting was mainly martensite and retained austenite. The grain boundaries disappeared and dissolved into matrix after quenching treatment at 980 °C, 1 020 °C, 1 050 °C and 1 100 °C, and the microstructure transformed to martensite. The hardness of quenching treatment parts was improved to 54.24 HRC, which was increased by approximately 10% compared with unheated parts. The anti-corrosion properties were greatly enhanced due to the dissolution of grain boundaries and the evenly distribution of anti-corrosion elements. The mass loss of quenching treatment parts decreases to 97% of the as-produced parts. Results indicate that the best match of hardness and anti-corrosion properties can be obtained when quenching at 1 050 °C for 1 h.



Key wordsselective laser melting      mould steel      quenching treatment      microstructure      corrosion resistance     
Received: 19 March 2018      Published: 28 March 2019
CLC:  TG 156  
  TG 142  
Corresponding Authors: Shi-feng WEN     E-mail: jixiantai@163.com;royal_wen@163.com
Cite this article:

Xian-tai JI,Shi-feng WEN,Qing-song WEI,Yan ZHOU,Zhi-ping CHEN. Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 664-670.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.04.007     OR     http://www.zjujournals.com/eng/Y2019/V53/I4/664


淬火处理对激光选区熔化成形S136组织与性能的影响

为了改善激光选区熔化(SLM)成形S136模具钢的性能,对SLM成形的试样进行淬火处理. 采用X射线衍射(XRD)和扫描电子显微镜(SEM),研究淬火温度对SLM成形S136的微观组织、硬度和耐腐蚀性能的影响. 结果表明:SLM成形的S136试样组织由马氏体和少量残余奥氏体组成,经过980、1 020、1 050和1 100 °C的淬火处理之后,原晶界消溶,组织大部分转变为马氏体;淬火处理后试样的硬度得到改善,最高值达到54.24 HRC,比原始成形试样提高了近10%;淬火处理后试样原晶界消溶,耐腐蚀性元素分布均匀使得耐腐蚀性能得到了极大的提升,与原始成形试样相比,腐蚀失重量减少了近97%. 优化淬火处理工艺后表明:采用1 050 °C保温1 h并油淬的淬火处理条件,可以得到最佳的硬度/耐蚀性能匹配.


关键词: 激光选区熔化,  模具钢,  淬火处理,  微观组织,  耐腐蚀性能 
w(Si) w(Mn) w(Cr) w(V) w(C) w(O) w(P) w(Fe)
0.96 0.98 13.55 0.4 0.29 0.078 0.01 83.732
Tab.1 Elemental composition of S136 powder
Fig.1 Morphology and particle size distribution of S136 powder
Fig.2 Schematic diagram of SLM
Fig.3 XRD spectra of SLMed S136 under different quenching temperature
Fig.4 Microstructure of S136 mould steel fabricated by SLM
Fig.5 Microstructure and EDS results of S136 under different quenching temperature
Fig.6 Hardness of S136 samples before and after quenching treatment
Fig.7 Mass loss of as-received and quenching-treated S136 specimens after 48 h immersion in 6% FeCl3 solution
Fig.8 Mass loss curves of specimens before and after quenching treatment at 980 °C
Fig.9 Corrosion products of S136 parts treated at 1 020 °C
[1]   ZHANG D, LIU J, CHEN Y, et al Investigation on S-136 steel surface planarization by chemical mechanical polishing[J]. Microelectronic Engineering, 2015, 134 (20): 47- 53
[2]   ASMELASH M, AZHARI M Examination of machining parameters on the surface roughness of STAVAX ESR material using electro discharge machining[J]. Advanced Materials Research, 2016, 1133: 339- 343
doi: 10.4028/www.scientific.net/AMR.1133
[3]   MEBRAHITOM A, RIZUAN D, AZMIR M, et al Effect of high-speed milling tool path strategies on the surface roughness of STAVAX ESR mold insert machining[J]. IOP Conference Series: Materials Science and Engineering, 2016, 114 (1): 012006
[4]   XU H L, WEN G H, SUN W, et al Thermal behaviour of moulds with different water channels and their influence on quality in continuous casting of beam blanks[J]. Ironmaking and Steelmaking, 2010, 37 (5): 380- 386
doi: 10.1179/030192310X12646889255780
[5]   中国模具工业协会 模具行业" 十二五”发展规划[J]. 模具工业, 2011, 37 (1): 1- 8
China Die and Mould Industry Association 12th five-year plant of die and mould industry[J]. Die and Mould Manufacture, 2011, 37 (1): 1- 8
doi: 10.3969/j.issn.1001-2168.2011.01.001
[6]   张祥林, 曹传亮, 查想, 等 高端精冲模具的制造探讨[J]. 塑性工程学报, 2013, 20 (1): 68- 71
ZHANG Xiang-lin, CAO Chuan-liang, ZHA Xiang, et al Study of manufacturing of high-end fineblanking tools[J]. Journal of Plasticity Engineering, 2013, 20 (1): 68- 71
doi: 10.3969/j.issn.1007-2012.2013.01.014
[7]   CONNER B P, MANOGHARAN G P, MARTOF A N, et al Making sense of 3-D printing: creating a map of additive manufacturing products and services[J]. Additive Manufacturing, 2014, s1-4: 64- 76
[8]   PONCHE R, KERBRAT O, MOGNOL P, et al A novel methodology of design for additive manufacturing applied to additive laser manufacturing process[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30 (4): 389- 398
doi: 10.1016/j.rcim.2013.12.001
[9]   SANTOS L M S, FERREIRA J A M, JESUS J S, et al Fatigue behavior of selective laser melting steel components[J]. Theoretical and Applied Fracture Mechanics, 2016, 85: 9- 15
doi: 10.1016/j.tafmec.2016.08.011
[10]   SONG B, XIAO Z, SHUAI L, et al Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review[J]. Frontiers of Mechanical Engineering, 2015, 10 (2): 111- 125
doi: 10.1007/s11465-015-0341-2
[11]   HAN J C, XIAO S L, TIAN J, et al Microstructure characterization and tensile properties of a Ni-containing TiAl-based alloy with heat treatment[J]. Rare Metals, 2016, 35 (1): 26- 34
doi: 10.1007/s12598-015-0626-y
[12]   CHEN H Y, GU D D, DAI D H, et al Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts[J]. Materials Science and Engineering A, 2017, 682 (13): 279- 289
[13]   TUCHO W M, CUVILLIER P, SJOLYST-KVERNELAND A, et al Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment[J]. Materials Science and Engineering A, 2017, 689 (24): 220- 232
[14]   丁利, 李怀学, 王玉岱, 等 热处理对激光选区熔化成形316不锈钢组织与拉伸性能的影响[J]. 中国激光, 2015, 42 (4): 179- 185
DING Li, LI Huai-xue, WANG Yu-dai, et al Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42 (4): 179- 185
[15]   林武, 张希旺, 赵延阔, 等 Q345钢奥氏体连续冷却转变曲线(CCT图)[J]. 材料科学与工艺, 2009, 17 (2): 247- 250
LIN Wu, ZHANG Xi-wang, ZHAO Yan-kuo, et al Continuous cooling transformation curve of undercooling austenite about Q345 steel (CCT diagram)[J]. Materials Science and Technology, 2009, 17 (2): 247- 250
[16]   XIA M, GU D, YU G, et al Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy[J]. International Journal of Machine Tools and Manufacture, 2017, 116: 96- 106
[17]   鲁思渊. 热处理工艺对Cr13型塑料模具钢组织与耐蚀性影响研究[D]. 北京: 清华大学, 2015.
LU Si-yuan. Effect of heat treatments on the microstructure and corrosion resistance of Cr13-type plastic mold steel [D]. Beijing: Tsinghua University, 2015.
[18]   刘嘉, 张锁梅, 赵爱民, 等 热处理对高铬铸铁组织和硬度的影响[J]. 热加工工艺, 2010, 39 (9): 28- 30
LIU Jia, ZHANG Suo-mei, ZHAO Ai-min, et al Effects of heat treatment on microstructure and properties of high chromium cast iron[J]. Hot Working Technology, 2010, 39 (9): 28- 30
doi: 10.3969/j.issn.1001-3814.2010.09.009
[19]   HU X, LI L, WU X, et al Coarsening behavior of M 23 C 6, carbides after ageing or thermal fatigue in AISI H13 steel with niobium[J]. International Journal of Fatigue, 2006, 28 (3): 175- 182
doi: 10.1016/j.ijfatigue.2005.06.042
[20]   RAY A K, MISHRA K K, DAS G, et al Life of rolls in a cold rolling mill in a steel plant-operation versus manufacture[J]. Engineering Failure Analysis, 2000, 7 (1): 55- 67
doi: 10.1016/S1350-6307(99)00004-7
[21]   芮家群. 15Cr超级马氏体不锈钢的腐蚀及钝化行为的研究[D]. 昆明: 昆明理工大学, 2013.
RUI Jia-qun. Corrosion and passivation properties of 15Cr supermartensitic stainless steel [D]. Kunming: Kunming University of Science and Technology, 2013.
[22]   LU S Y, YAO K F, CHEN Y B, et al Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel[J]. Journal of Applied Electrochemistry, 2015, 45 (4): 375- 383
doi: 10.1007/s10800-015-0796-1
[23]   LU S Y, YAO K F, CHEN Y B, et al The effect of tempering temperature on the microstructure and electrochemical properties of a 13 wt.% Cr-type martensitic stainless steel[J]. Electrochimica Acta, 2015, 165: 45- 55
doi: 10.1016/j.electacta.2015.02.038
[24]   WEN S, SHUAI L, WEI Q, et al Effect of molten pool boundaries on the mechanical properties of selective laser melting parts[J]. Journal of Materials Processing Technology, 2014, 214 (11): 2660- 2667
doi: 10.1016/j.jmatprotec.2014.06.002
[25]   SUN Y, MOROZ A, ALRBAEY K Sliding wear characteristics and corrosion behaviour of selective laser melted 316l stainless steel[J]. Journal of Materials Engineering and Performance, 2014, 23 (2): 518- 526
doi: 10.1007/s11665-013-0784-8
[26]   DAI N, ZHANG L C, ZHANG J, et al Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution[J]. Corrosion Science, 2016, 102: 484- 489
doi: 10.1016/j.corsci.2015.10.041
[1] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[2] Yong-gui WANG,Shuai-peng LI,Peter HUGHES,Yu-hui FAN,Xiang-yu GAO. Elevated temperatures performance of modified recycled aggregate concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2047-2057.
[3] Dong-ming YAN,Zhi-hao HUANG,Gong CHEN,Hao QIAN,Jia-hua DENG,Yi LIU. Study on corrosion resistance of low-temperature sintered chemically reactive enamel coated rebars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 56-63.
[4] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[5] Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.
[6] Yu XIANG,Shu-zhe ZHANG,Jun-feng LI,Zheng-ying WEI,Li-xiang YANG,Li-hao JIANG. Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2102-2109.
[7] YANG Ji-hu, SUN Zhi-jian, YUAN Rui-feng, HUANG Hao, CHEN Tian-yu, HU Ya-cai. Study on heat transfer and ash deposit characteristics of fluoroplastic steel air-preheater in power plant[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 577-583.
[8] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1849-1854.
[9] XU Ri-qing, XU Li-yang, DENG Yi-wen, ZHU Yi-hong. Experimental study on soft clay contact area based on SEM and IPP[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1417-1425.
[10] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1345-1352.
[11] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 0-07.
[12] WANG Hai-long, DONG Yi-sen, SUN Xiao-yan, JIN Wei-liang. Damage mechanism of concrete deteriorated by sulfate attack
in wet-dry cycle environment
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1255-1261.
[13] WANG Xin-fei, HUANG Zhi-yi, LIU Zhuo, ZHU Xing-yi, XU-Wei. Analysis of distribution properties of coarse aggregates in HMA
based on delaunay triangulation
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 263-268.
[14] CAI Jing-shunCAO Fa-he,CHANG Lin-rong,ZHANG Zhao,ZHANG Jian-qing,CAO Chu-nan. The study of microarc oxidation coating on AZ91 modified by
cerium and its corrosion resistance
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 2055-2062.
[15] HU Jun, ZHONG Li-jun, NI Zhe-ming. Effects of microstructure on temperature dependence of
permeability of NiCuZn ferrites
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2416-2420.