Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (2): 275-283    DOI: 10.3785/j.issn.1008-973X.2019.02.010
Civil Engineering, Traffic Engineering     
Factors influencing permeability anisotropy of remolded kaolin
Liang-gui YU1,2(),Jian ZHOU1,2,*(),Xiao-gui WEN1,2,Jie XU1,2,Ling-hui LUO1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1189KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A series of experiments were conducted by triaxial permeameter to analysis the permeability anisotropy of soft soil. The effects of electrolyte type, ionic molar concentration and consolidation pressure on permeability anisotropy and the corresponding microscopic mechanisms were investigated, with remolded kaolin as the research object. Results showed that under one-dimensional consolidation, kaolin particles, most having flat structure, tended to orientate perpendicularly to the direction of the major principal stress and the pore area of remolded kaolin in vertical profile was much larger than that in horizontal profile. As a result, permeability anisotropy ratio (ratio of horizontal to vertical permeability coefficients) was greater than one. Permeability anisotropy ratio decreased with the increase of consolidation pressure, of which the main reason was that the amount of large pores, which had higher compressibility, in vertical profile was larger than that in horizontal profile. Malaysia kaolin has flocculated structure if prepared in ultrapure water, while has dispersed structure in saline solution. The measured permeability anisotropy ratio in ultrapure water was larger than that in saline solution, which was the consequence of more large pores in vertical profile than that in horizontal profile in ultrapure water. The vertical and horizontal profiles had similar amounts of large pores in saline solution. Test results also revealed that the electrolyte type and ionic molar concentration had little effect on the permeability anisotropy ratio of Malaysia kaolin.



Key wordspermeability anisotropy      remolded kaolin      electrolyte solution      consolidation pressure      microstructure     
Received: 04 February 2018      Published: 21 February 2019
CLC:  TU 47  
Corresponding Authors: Jian ZHOU     E-mail: 2191212859@qq.com;zjelim@zju.edu.cn
Cite this article:

Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.02.010     OR     http://www.zjujournals.com/eng/Y2019/V53/I2/275


重塑高岭土渗透各向异性影响因素

为了研究软土渗透各向异性,以重塑高岭土为研究对象,利用三轴渗流仪对重塑高岭土展开一系列渗流试验,研究电解质类型、浓度及固结压力对软黏土渗透各向异性的影响,并从微观角度解释其作用机理。研究发现:1)高岭土颗粒为扁平状结构,在一维固结下颗粒趋向于垂直于主应力方向排列,重塑高岭土竖向剖面孔隙面积大于水平向剖面孔隙面积,这2个因素共同导致渗透各向异性比(水平渗透系数与垂直渗透系数之比)大于1;2)渗透各向异性比随固结压力增大而减小,主要是因为竖向剖面大孔隙较多,压力作用下竖向剖面孔隙面积减小幅度大于水平剖面孔隙面积减小幅度;3)马来西亚高岭土在高纯水下为絮凝状结构,在盐溶液下为散凝状结构,在高纯水下土体竖向剖面大孔隙较多,而在盐溶液下竖向剖面孔隙和水平向剖面孔隙较为接近,导致在高纯水下测得的渗透各向异性比在盐溶液下的测量结果大;4)在本试验条件下,电解质类型、浓度对马来西亚高岭土渗透各向异性比的影响均较小。


关键词: 渗透各向异性,  重塑高岭土,  电解质溶液,  固结压力,  微观结构 
水平向试样 竖向试样 编号说明 液体类型 cB/(mol?L?1 p/kPa
S1HP1 S1VP1 S1代表试样1;H和V分别代表水平方向和竖直方向;P代表固结压力,P1代表100 kPa固结压力,依此类推 纯水 ? 100
S1HP2 S1VP2 200
S1HP3 S1VP3 300
S2HP1 S2VP1 S2代表试样2;试验在氯化钠溶液下开展;其余参数同上 氯化钠溶液 0.10 100
S2HP2 S2VP2 200
S2HP3 S2VP3 300
S3HP1 S3VP1 S3代表试样3;试验在氯化钾溶液下开展;其余参数同上 氯化钾溶液 0.10 100
S3HP2 S3VP2 200
S3HP3 S3VP3 300
S4HP1 S4VP1 S4代表试样4;试验在氯化钙溶液下开展;其余参数同上 氯化钙溶液 0.10 100
S4HP2 S4VP2 200
S4HP3 S4VP3 300
S5Hc0.01 S5Vc0.01 S5~S7分别代表试验在NaCl、KCl、CaCl2溶液下开展;c代表浓度;其余参数同上 氯化钠溶液 0.01 100
S6Hc0.01 S6Vc0.01 氯化钾溶液 0.01 100
S7Hc0.01 S7Vc0.01 氯化钙溶液 0.01 100
Tab.1 Experiment schemes for permeability anisotropy of remolded kaolin
t/h S1HP1 S3HP1 t/h S1HP1 S3HP1 t/h S3HP1
${\varDelta _Q}$/% kh/(10?7 cm?s?1 ${\varDelta _Q}$/% kh/(10?7 cm?s?1 ${\varDelta _Q}$/% kh(10?7 cm?s?1 ${\varDelta _Q}$/% kh(10?7 cm?s?1 ${\varDelta _Q}$/% kh/(10?7 cm?s?1
注:S1HP1的单位时间内流量差和渗透系数较为稳定,试验时间可适当缩短;而S3HP1可适当增加试验时间
1 ?0.79 22.91 ?3.42 16.87 21 1.18 21.12 0.00 13.94 41 ?1.87 13.86
2 ?0.15 21.52 ?2.64 16.49 22 0.55 21.26 ?0.75 14.15 42 ?0.34 14.21
3 ?0.15 21.39 ?5.39 16.34 23 0.74 21.24 ?1.79 14.01 43 ?0.66 14.80
4 ?0.08 21.40 ?4.14 16.21 24 ?0.70 21.08 ?2.75 14.03 44 ?0.37 15.55
5 ?0.62 21.36 ?5.60 15.86 25 ?0.35 21.13 ?2.76 14.01 45 ?0.99 15.59
6 1.29 21.27 2.13 15.87 26 0.43 21.18 ?2.74 14.12 46 ?0.88 15.71
7 ?0.27 21.51 2.91 15.92 27 0.67 21.09 ?0.11 14.29 47 ?0.16 15.43
8 ?1.26 21.48 1.29 15.95 28 ?0.04 21.14 0.34 14.38 48 ?0.96 15.27
9 ?0.74 21.28 0.93 15.93 29 ? ? ?2.37 14.29 49 ?0.27 15.25
10 ?1.40 21.05 0.36 15.87 30 ? ? ?1.21 13.81 50 ?0.44 14.84
11 ?0.12 21.16 ?0.52 15.77 31 ? ? ?4.00 13.59 51 ?1.33 14.57
12 ?0.71 20.90 ?1.34 15.67 32 ? ? 0.72 13.61 52 ?0.68 14.39
13 ?1.03 20.82 ?1.53 15.37 33 ? ? ?0.06 13.69 53 ?1.31 14.18
14 0.16 20.88 ?1.71 15.15 34 ? ? ?0.65 13.68 54 ?0.81 14.07
15 ?0.76 20.69 ?1.61 15.10 35 ? ? ?0.47 13.84 55 ?0.82 13.94
16 0.52 20.75 ?2.71 14.87 36 ? ? ?0.53 13.81 56 ?1.16 13.98
17 0.40 20.86 ?1.16 14.63 37 ? ? 0.00 13.94 57 ?0.69 14.16
18 0.44 20.85 ?12.57 14.29 38 ? ? ?0.75 14.15 58 ?3.09 14.29
19 0.20 20.95 ?10.85 13.87 39 ? ? ?1.79 14.01 59 ?1.48 14.25
20 1.34 21.07 ?0.59 13.80 40 ? ? ?2.75 14.03 60 ?2.23 14.12
Tab.2 Differences between inflow and outflow in S1HP1 and S3HP1 tests and horizontal permeability coefficients
Fig.1 Radial strain curve of S1HP1 in process of consolidation and seepage
土样 离子
种类
cB/
(mol?L?1
p/kPa ${k_{\rm h}}$/
(10?7 cm?s?1
${k_{\rm v}}$/
(10?7 cm?s?1
${r_k}$
S1 超纯水 ? 100 21.19 15.28 1.39
200 16.12 12.24 1.32
300 12.38 10.27 1.21
S2 钠离子 0.10 100 12.87 10.75 1.20
200 9.90 8.46 1.17
300 7.16 6.72 1.07
S3 钾离子 0.10 100 14.86 12.31 1.21
200 10.57 9.17 1.15
300 8.56 7.73 1.11
S4 钙离子 0.10 100 10.77 9.39 1.15
200 8.41 7.44 1.13
300 5.95 5.55 1.07
S5 钠离子 0.01 100 13.66 11.56 1.18
S6 钾离子 0.01 100 14.07 11.71 1.20
S7 钙离子 0.01 100 11.89 9.80 1.21
Tab.3 Experimental data of permeability anisotropy ratios of remolded kaolin prepared with different solutions under various pressures
Fig.2 Sketch of particles arrangement of remolded kaolin
Fig.3 Permeability anisotropy ratios of remolded kaolin prepared with different solutions under various pressures
Fig.4 Portable pH meter
Fig.5 Relationship between pore ratio and vertical permeability coefficient of kaolin under different microstructures
Fig.6 Sketch of microstructures of remolded kaolin prepared with 0.10 mol/L KCl solution and ultrapure water
Fig.7 Relationship between permeability anisotropy ratio of remolded kaolin and consolidation pressure at different solutions
Fig.8 SEM binary images of remolded kaolin prepared with ultrapure water and 0.10 mol/L KCl solution under consolidation pressure of 100 kPa
Fig.9 SEM binary images of remolded kaolin prepared with ultrapure water and 0.10 mol/L KCl solution under consolidation pressure of 300 kPa
S/像素 竖向孔隙数量 水平向孔隙数量
100 kPa 300 kPa 100 kPa 300 kPa
0~50 951 381 872 349
50~200 149 64 175 40
200~500 31 9 24 2
500~1 000 9 0 1 0
1 000~2 000 4 0 0 0
>2 000 1 0 0 0
合计 1 145 454 1 072 391
$\bar S$/像素 47.1 34.02 35.75 28.26
Tab.4 Pore distribution of remolded kaolin prepared with ultrapure water under consolidation pressure of 100 kPa and 300 kPa
Fig.10 Curves between permeability anisotropy ratio and logarithm of ion concentration of remolded kaolin prepared with different solutions
溶液类型 0.01 mol/L 0.10 mol/L
ωL ωP ωL ωP
超纯水 65.35 40.04 65.35 40.04
氯化钠 63.99 42.61 59.67 40.25
氯化钾 63.36 42.36 59.22 40.33
氯化钙 63.12 41.03 58.89 40.18
Tab.5 Liquid and plastic limits of remolded kaolin prepared with different solutions
[1]   刘正义. 软黏土屈服特性及各向异性屈服面方程研究[D]. 杭州: 浙江大学, 2014: 6–9.
LIU Zheng-yi. Study on yielding characteristics and anisotropic yield surface equation of soft clay [D]. Hangzhou: Zhejiang University, 2014: 6–9.
[2]   柯瀚, 吴小雯, 张俊, 等 基于优势流及各向异性随上覆压力变化的填埋体饱和渗流模型[J]. 岩土工程学报, 2016, 38 (11): 957- 1964
KE Han, WU Xiao-wen, ZHANG Jun, et al Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (11): 957- 1964
[3]   ZHANG D M, MA L X, ZHANG J, et al Ground and tunnel responses induced by partial leakage in saturated clay with anisotropic permeability[J]. Engineering Geology, 2015, 189: 104- 115
doi: 10.1016/j.enggeo.2015.02.005
[4]   LEROUEIL S, BOUCLIN G, TAVENAS F, et al Permeability anisotropy of natural clays as a function of strain[J]. Canadian Geotechnical Journal, 1990, 27 (5): 568- 579
doi: 10.1139/t90-072
[5]   TAVENAS F, JEAN P, LEBLOND P, et al The permeability of natural soft clays. part Ⅱ: permeability characteristics[J]. Canadian Geotechnical Journal, 1983, 20 (4): 645- 660
doi: 10.1139/t83-073
[6]   ADAMS A L, GERMAINE J T, FLEMINGS P B, et al Stress induced permeability anisotropy of Resedimented Boston Blue Clay[J]. Water Resources Research, 2013, 49 (10): 6561- 6571
[7]   ADAMS A L, TAYLOR J, NORDQUIST, et al Permeability anisotropy and resistivity anisotropy of mechanically compressed mud rocks[J]. Canadian Geotechnical Journal, 2016, 53 (9): 1474- 1482
doi: 10.1139/cgj-2015-0596
[8]   REN X W, SANTAMARINA J C The hydraulic conductivity of sediments: a pore size perspective[J]. Engineering Geology, 2018, 233: 48- 54
doi: 10.1016/j.enggeo.2017.11.022
[9]   CHAPUIS R P Predicting the saturated hydraulic conductivity of soils: a review[J]. Bulletin of Engineering Geology and the Environment, 2012, 71 (3): 401- 434
[10]   曾玲玲, 洪振舜, 陈福全 压缩过程中重塑黏土渗透系数的变化规律[J]. 岩土力学, 2012, 33 (5): 1286- 1292
ZENG Ling-ling, HONG Zhen-shun, CHEN Fu-quan A law of change in permeability coefficient during compression of remolded clays[J]. Rock and Soil Mechanics, 2012, 33 (5): 1286- 1292
doi: 10.3969/j.issn.1000-7598.2012.05.002
[11]   邓永锋, 刘松玉, 章定文, 等. 几种孔隙比与渗透系数关系的对比[J]. 西北地震工程学报, 2011, 33(增1): 64–66.
DENG Yong-feng, LIU Song-yu, ZHANG Ding-wen, et al. Comparison among some relationships between permeability and void ratio [J]. Northwestern Seismologi Journal, 2011, 33(Suppl. 1): 64–66.
[12]   HORPIBULSUK S, YANGSUKKASEAM N, CHINKULKIJNIWAT A, et al Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite[J]. Applied Clay Science, 2011, 52 (1/2): 150- 159
[13]   SPAGNOLI G, RUBINOS D, STANJEK H, et al Undrained shear strength of clays as modified by pH variations[J]. Bulletin of Engineering Geology and the Environment, 2012, 71 (1): 135- 148
[14]   王宝峰. 孔隙溶液环境对黏土力学特性影响的试验研究[D]. 杭州: 浙江大学, 2017: 19–31.
WANG Bao-feng. Experimental study on the effect of pore fluid properties on the clay mechanical characteristics [D]. Hangzhou: Zhejiang University, 2017: 19–31.
[15]   ZAKERI A, CLUKEY E C, KEBADZE E B, et al Fatigue analysis of offshore well conductors. part I: study overview and evaluation of series 1 centrifuge tests in normally consolidated to lightly over-consolidated kaolin clay[J]. Applied Ocean Research, 2016, 57: 78- 95
doi: 10.1016/j.apor.2016.03.002
[16]   HODDER M S, CASSIDY M J A plasticity model for predicting the vertical and lateral behaviour of pipelines in clay soils[J]. Geotechnique, 2010, 60 (4): 247- 263
doi: 10.1680/geot.8.P.055
[17]   ASTM. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter: D5084–03 [S]. West Conshohocken: ASTM, 2003: 1–12.
[18]   REN X, ZHAO Y, DENG Q, et al A relation of hydraulic conductivity – void ratio for soils based on Kozeny-carman equation[J]. Engineering Geology, 2016, 213: 89- 97
doi: 10.1016/j.enggeo.2016.08.017
[19]   BENHUR M, YOLCU G, UYSAL H, et al Soil structure changes: aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions[J]. Australian Journal of Soil Research, 2015, 47 (7): 688- 696
[20]   PILLAI R J, ROBINSON R G, BOOMINATHAN A Effect of microfabric on undrained static and cyclic behavior of kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137 (4): 421- 429
[21]   WAHID A S, GAJO A, MAGGIO R Chemo-mechanical effects in kaolinite. part Ⅱ: exposed samples chemical and phase analyses[J]. Géotechnique, 2011, 61 (6): 449- 457
[22]   MAGGIO R D, GAJO A, WAHID A S Chemo-mechanical effects in kaolinite. part Ⅰ: prepared samples[J]. Géotechnique, 2011, 61 (6): 439- 447
doi: 10.1680/geot.8.P.068
[23]   LIN H, PENUMADU D Experimental investigation on principal stress rotation in kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (5): 633- 642
[24]   KENNEY T C Permeability ratio of repeatedly layered soils[J]. Géotechnique, 1963, 13 (4): 325- 333
doi: 10.1680/geot.1963.13.4.325
[25]   WANG Y H, SIU W K Structure characteristics and mechanical properties of kaolinite soils. I. surface charges and structural characterizations[J]. Canadian Geotechnical Journal, 2006, 43: 601- 617
doi: 10.1139/t06-027
[26]   曹洋. 波浪作用下原状软粘土动力特性与微观结构关系试验研究[D]. 杭州: 浙江大学, 2013: 22–28.
CAO Yang. Experimental study on the relationship of dynamic characteristics and microstructure of intact soft under wave loading [D]. Hangzhou: Zhejiang University, 2013: 22–28.
[27]   冯晓腊, 沈孝宇 饱和粘性土的渗透固结特性及其微观机制的研究[J]. 水文地质工程地质, 1991, (1): 6- 12
FENG Xiao-la, SHEN Xiao-yu Permeability consolidation characteristics of saturated cohesive soil and its micro-mechanics[J]. Hydrogeology and Engineering Geology, 1991, (1): 6- 12
[28]   陈宝, 朱嵘, 常防震. 不同压应力作用下黏土体积变形的微观特征[J]. 岩土力学, 2011(增1): 95–99.
CHEN Bao, ZHU Rong, CHANG Fang-zhen. Microstructural characteristics of volumetric deformation of clay under different compression stresses [J]. Rock and Soil Mechanics, 2011, 32(Suppl. 1): 95–99.
[29]   SCHMITZ R M, SCHROEDER C, CHARLIER R Chemo-mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits[J]. Applied Clay Science, 2004, 26 (1?4): 351- 358
doi: 10.1016/j.clay.2003.12.015
[1] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[2] Yong-gui WANG,Shuai-peng LI,Peter HUGHES,Yu-hui FAN,Xiang-yu GAO. Elevated temperatures performance of modified recycled aggregate concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2047-2057.
[3] Dong-ming YAN,Zhi-hao HUANG,Gong CHEN,Hao QIAN,Jia-hua DENG,Yi LIU. Study on corrosion resistance of low-temperature sintered chemically reactive enamel coated rebars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 56-63.
[4] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[5] Xian-tai JI,Shi-feng WEN,Qing-song WEI,Yan ZHOU,Zhi-ping CHEN. Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 664-670.
[6] WU Jian-qi, YANG Xiao, XU Xu, LIU Fei-yu. Cyclic triaxial tests on saturated red clay under partially drained condition[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1309-1316.
[7] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1849-1854.
[8] XU Ri-qing, XU Li-yang, DENG Yi-wen, ZHU Yi-hong. Experimental study on soft clay contact area based on SEM and IPP[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1417-1425.
[9] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1345-1352.
[10] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 0-07.
[11] WANG Hai-long, DONG Yi-sen, SUN Xiao-yan, JIN Wei-liang. Damage mechanism of concrete deteriorated by sulfate attack
in wet-dry cycle environment
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1255-1261.
[12] WANG Xin-fei, HUANG Zhi-yi, LIU Zhuo, ZHU Xing-yi, XU-Wei. Analysis of distribution properties of coarse aggregates in HMA
based on delaunay triangulation
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 263-268.
[13] HU Jun, ZHONG Li-jun, NI Zhe-ming. Effects of microstructure on temperature dependence of
permeability of NiCuZn ferrites
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2416-2420.