计算机技术、自动化技术 |
|
|
|
|
基于超图卷积神经网络的多行为感知服务推荐方法 |
陆佳炜1,2( ),李端倪1,王策策3,徐俊1,肖刚1,2,*( ) |
1. 浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 2. 中国计量大学 机电工程学院,浙江 杭州 310018 3. 中国计量大学 信息工程学院,浙江 杭州 310018 |
|
Multi-behavior aware service recommendation based on hypergraph graph convolution neural network |
Jia-wei LU1,2( ),Duan-ni LI1,Ce-ce WANG3,Jun XU1,Gang XIAO1,2,*( ) |
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China 2. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China 3. College of Information Engineering, China Jiliang University, Hangzhou 310018, China |
引用本文:
陆佳炜,李端倪,王策策,徐俊,肖刚. 基于超图卷积神经网络的多行为感知服务推荐方法[J]. 浙江大学学报(工学版), 2023, 57(10): 1977-1986.
Jia-wei LU,Duan-ni LI,Ce-ce WANG,Jun XU,Gang XIAO. Multi-behavior aware service recommendation based on hypergraph graph convolution neural network. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1977-1986.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.007
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I10/1977
|
1 |
曹步清, 肖巧翔, 张祥平, 等 融合 SOM 功能聚类与 DeepFM 质量预测的 API 服务推荐方法[J]. 计算机学报, 2019, 42 (6): 1367- 1383 CAO Bu-qing, XIAO Qiao-xiang, ZHANG Xiang-ping, et al An API service recommendation method via combining self-organization map-based functionality clustering and deep factorization machine-based quality prediction[J]. Chinese Journal of Computers, 2019, 42 (6): 1367- 1383
doi: 10.11897/SP.J.1016.2019.01367
|
2 |
ZHENG Z, MA H, LYU M R, et al. WSRec: a collaborative filtering based web service recommender system [C]// IEEE International Conference on Web Services. Los Angeles: IEEE, 2009: 437-444.
|
3 |
JIANG Y, LIU J, TANG M, et al. An effective web service recommendation method based on personalized collaborative filtering [C]// IEEE International Conference on Web Services. Washington: IEEE, 2011: 211-218.
|
4 |
AGARWAL N, SIKKA G, AWASTHI L K Enhancing web service clustering using Length Feature Weight Method for service description document vector space representation[J]. Expert Systems with Applications, 2020, 161: 113682
doi: 10.1016/j.eswa.2020.113682
|
5 |
陆佳炜, 吴涵, 张元鸣, 等 融合功能语义关联计算与密度峰值检测的Mashup服务聚类方法[J]. 计算机学报, 2021, 44 (7): 1501- 1516 LU Jia-wei, WU Han, ZHANG Yuan-ming, et al Mashup service clustering method via integrating functional semantic association calculation and density peak detection[J]. Chinese Journal of Computers, 2021, 44 (7): 1501- 1516
|
6 |
陆佳炜, 郑嘉弘, 李端倪, 等 面向服务聚类的短文本优化主题模型[J]. 浙江大学学报: 工学版, 2021, 56 (12): 2416- 2425 LU Jia-wei, ZHENG Jia-hong, LI Duan-ni, et al Short text optimized topic model for service clustering[J]. Journal of Zhejian University: Engineering Science, 2021, 56 (12): 2416- 2425
|
7 |
CAO Y, LIU J, SHI M, et al. Service recommendation based on attentional factorization machine [C]// IEEE International Conference on Services Computing. Milan: IEEE, 2019: 189-196.
|
8 |
XIA X, YIN H, YU J, et al. Self-supervised hypergraph convolutional networks for session-based recommendation [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Virtual Event: AAAI, 2021: 4503-4511.
|
9 |
WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 346-353.
|
10 |
FENG Y, YOU H, ZHANG Z, et al. Hypergraph neural networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 3558-3565.
|
11 |
JIN B, GAO C, HE X, et al. Multi-behavior recommendation with graph convolutional networks [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi'an: ACM, 2020: 659-668.
|
12 |
YANG Y, HUANG C, XIA L, et al. Multi-behavior hypergraph-enhanced transformer for sequential recommendation [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington: ACM, 2022: 2263-2274.
|
13 |
XIA L, XU Y, HUANG C, et al. Graph meta network for multi-behavior recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Virtual Event: ACM, 2021: 757-766.
|
14 |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and deep locally connected networks on graphs [C]// International Conference on Learning Representations. Banff: [s.n.], 2014: 1-14.
|
15 |
WELLING M, KIPF T N. Semi-supervised classification with graph convolutional networks [C]// International Conference on Learning Representations. Toulon: [s.n.], 2017: 1-14.
|
16 |
CHEUNG M, SHI J, JIANG L, et al. Pooling in graph convolutional neural networks [C]// 53rd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove: IEEE, 2019: 462-466.
|
17 |
YING Z, YOU J, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: NIPS, 2018: 4805-4815.
|
18 |
LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation [C]// Proceedings of ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 1419-1428.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|