计算机与控制工程 |
|
|
|
|
基于图像识别的弓网接触点检测方法 |
李凡1,2( ),杨杰1,2,*( ),冯志成1,2,陈智超1,2,付云骁3 |
1. 江西理工大学 电气工程与自动化学院,江西 赣州 341000 2. 江西省磁悬浮技术重点实验室,江西 赣州 341000 3. 中车工业研究院有限公司,北京 100070 |
|
Pantograph-catenary contact point detection method based on image recognition |
Fan LI1,2( ),Jie YANG1,2,*( ),Zhicheng FENG1,2,Zhichao CHEN1,2,Yunxiao FU3 |
1. School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China 2. Jiangxi Provincial Key Laboratory of Maglev Technology, Ganzhou 341000, China 3. CRRC Industrial Institute Co. Ltd, Beijing 100070, China |
引用本文:
李凡,杨杰,冯志成,陈智超,付云骁. 基于图像识别的弓网接触点检测方法[J]. 浙江大学学报(工学版), 2024, 58(9): 1801-1810.
Fan LI,Jie YANG,Zhicheng FENG,Zhichao CHEN,Yunxiao FU. Pantograph-catenary contact point detection method based on image recognition. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1801-1810.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.005
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1801
|
1 |
邵丽青, 易钶 我国电动重卡市场发展现状[J]. 专用汽车, 2022, (10): 1- 3 SHAO Liqing, YI Ke Development status of electric heavy truck market in China[J]. Special Purpose Vehicle, 2022, (10): 1- 3
|
2 |
杨卢强, 韩通新, 王志良 高速动车组受电弓安全检测的研究[J]. 铁道运输与经济, 2017, 39 (8): 66- 71 YANG Luqiang, HAN Tongxin, WANG Zhiliang Study on safety detection of high-speed emu pantograph[J]. Railway Transport and Economy, 2017, 39 (8): 66- 71
|
3 |
零碳排放!我国首款双源智能重卡成功下线[EB/OL]. (2023-03-14) [2023-08-01]. https://news.bjd.com.cn/2023/03/14/10364351.shtml.
|
4 |
周宁, 杨文杰, 刘久锐, 等 基于受电弓状态感知的弓网安全监测系统研究与探讨[J]. 中国科学: 技术科学, 2021, 51 (1): 23- 34 ZHOU Ning, YANG Wenjie, LlU Jiurui, et al Investigation of a pantograph-catenary monitoring system using condition-based pantograph recognition[J]. Scientia Sinica: Technologica, 2021, 51 (1): 23- 34
doi: 10.1360/SST-2019-0282
|
5 |
KARAKOSE E, GENCOGLU M T, KARAKOSE M, et al A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph-catenary systems[J]. IEEE Transactions on Industrial Informatics, 2017, 13 (2): 635- 643
doi: 10.1109/TII.2016.2628042
|
6 |
AYDIN I, KARAKOSE M, AKIN E A new contactless fault diagnosis approach for pantograph-catenary system using pattern recognition and image processing methods[J]. Advances in Electrical and Computer Engineering, 2014, 14 (3): 79- 88
doi: 10.4316/AECE.2014.03010
|
7 |
范虎伟, 卞春华, 朱挺, 等 非接触式接触网定位器坡度自动检测技术[J]. 计算机应用, 2010, 30 (Suppl.2): 102- 103 FAN Huwei, BIAN Chunhua, ZHU Ting, et al Automatic detection of positioning line in contactless overhead contact system[J]. Journal of Computer Applications, 2010, 30 (Suppl.2): 102- 103
|
8 |
张桂南, 刘志刚. 基于角点匹配与谱聚类的接触网绝缘子破损/夹杂异物故障检测[J]. 仪器仪表学报, 2014, 35(6): 1370−1377. ZHANG Guinan, LIU Zhigang. Fault detection of catenary insulator damage/foreign material based on corner matching and spectral clustering [J]. Chinese Journal of Scientific Instrument , 2014, 35(6): 1370−1376.
|
9 |
ZHANG D, GAO S, YU L, et al A robust pantograph-catenary interaction condition monitoring method based on deep convolutional network[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (5): 1920- 1929
|
10 |
CHEN R, LIN Y, JIN T High-speed railway pantograph-catenary anomaly detection method based on depth vision neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1- 10
|
11 |
YANG X, ZHOU N, LIU Y, et al Online pantograph-catenary contact point detection in complicated background based on multiple strategies[J]. IEEE Access, 2020, 8: 220394- 220407
doi: 10.1109/ACCESS.2020.3042535
|
12 |
张乔木, 钟倩文, 孙明, 等 复杂环境下弓网接触位置动态监测方法研究[J]. 电子科技, 2022, 35 (8): 66- 72 ZHANG Qiaomu, ZHONG Qianwan, SUN Ming, et al Research on dynamic monitoring method of pantograph net contact position in complex environment[J]. Electronic Science and Technology, 2022, 35 (8): 66- 72
|
13 |
王恩鸿, 柴晓冬, 钟倩文, 等 基于视频图像的弓网接触位置动态监测方法[J]. 城市轨道交通研究, 2021, 24 (7): 198- 203 WANG Enhong, CHAI Xiaodong, ZHONG Qianwen, et al Dynamic monitoring method of pantograph-caternary contact position based on video image[J]. Urban Mass Transit, 2021, 24 (7): 198- 203
|
14 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Boston: IEEE, 2015: 3431−3440.
|
15 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention MICCAI 2015: 18th International Conference . Munich: Springer, 2015: 234−241.
|
16 |
HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3 [C]// International Conference on Computer Vision . Seoul: IEEE, 2019: 1314−1324.
|
17 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs [EB/OL]. (2014−12-22) [2023-08-01]. https://arxiv.org/abs/ 1412.7062.
|
18 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al Deeplab semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848
|
19 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Proceedings of the European Conference on Computer Vision . Munich: Springer, 2018: 801−818.
|
20 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 2881−2890.
|
21 |
YANG M, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018, 3684−3692.
|
22 |
YU C, WANG J, PENG C, et al. BiSeNet: bilateral seg-mentation network for real-time semantic segmentation [C]// Proceedings of the European Conference on Computer Vision . Munich : Springer, 2018: 325−341.
|
23 |
YU C, GAO C, WANG J, et al BiSeNet v2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129: 3051- 3068
doi: 10.1007/s11263-021-01515-2
|
24 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 7132−7141.
|
25 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10) [2023-08-01] . http://arxiv.org/abs/1409.1556.
|
26 |
任凤雷, 杨璐, 周海波, 等. 基于改进BiSeNet的实时图像语义分割[J]. 光学精密工程, 2023, 31(8): 1217−1227. REN Fenglei, YANG Lu, ZHOU Haibo, et al. Real-time semantic segmentation based on improved BiSeNet[J] Optics and Precision Engineering, 2023, 31(8): 1217−1227.
|
27 |
XU Q, MA Y, WU J, et al. Faster BiSeNet: a faster bilateral segmentation network for real-time semantic segmentation [C]// 2021 International Joint Conference on Neural Networks . Shenzhen: IEEE, 2021: 1−8.
|
28 |
陈智超, 焦海宁, 杨杰, 等 基于改进MobileNet v2的垃圾图像分类算法[J]. 浙江大学学报: 工学版, 2021, 55 (8): 1490- 1499 CHEN Zhichao, JIAO Haining, YANG Jie, et al Garbage image classification algorithm based on improved MobileNet v2[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1490- 1499
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|