|
|
基于深度学习的EEG数据分析技术综述 |
钟博( ),王鹏飞,王乙乔,王晓玲*( ) |
华东师范大学 计算机科学与技术学院,上海 200062 |
|
Survey of deep learning based EEG data analysis technology |
Bo ZHONG( ),Pengfei WANG,Yiqiao WANG,Xiaoling WANG*( ) |
School of Computer Science and Technology, East China Normal University, Shanghai 200062, China |
引用本文:
钟博,王鹏飞,王乙乔,王晓玲. 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报(工学版), 2024, 58(5): 879-890.
Bo ZHONG,Pengfei WANG,Yiqiao WANG,Xiaoling WANG. Survey of deep learning based EEG data analysis technology. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 879-890.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.05.001
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I5/879
|
1 |
HOSSEINU M P, HOSSEINI A, AHI K A review on machine learning for EEG signal processing in bioengineering[J]. IEEE Reviews in Biomedical Engineering, 2020, 14: 204- 218
|
2 |
JIANG X, BIAN G B, TIAN Z Removal of artifacts from EEG signals: a review[J]. Sensors, 2019, 19 (5): 987
doi: 10.3390/s19050987
|
3 |
ZHANG X, YAO L, WANG X, et al. A survey on deep learning based brain computer interface: recent advances and new frontiers [EB/OL]. [2019-05-10]. https://arxiv.org/pdf/1905.04149.
|
4 |
OKAMOTO M, DAN H, SAKAMOTO K, et al Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping[J]. Neuroimage, 2004, 21 (1): 99- 111
doi: 10.1016/j.neuroimage.2003.08.026
|
5 |
O'REILLY C, GOSSELIN N, CARRIER J, et al Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research[J]. Journal of Sleep Research, 2014, 23 (6): 628- 635
doi: 10.1111/jsr.12169
|
6 |
GOLDBERGER A L, AMARAL L A N, GLASS L, et al PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101 (23): e215- e220
|
7 |
ZHENG W L, LIU W, LU Y, et al Emotionmeter: a multimodal framework for recognizing human emotions[J]. IEEE Transactions on Cybernetics, 2019, 49 (3): 1110- 1122
doi: 10.1109/TCYB.2018.2797176
|
8 |
KOELSTRA S, MUHL C, SOLEYMANI M, et al Deap: a database for emotion analysis; using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3 (1): 18- 31
doi: 10.1109/T-AFFC.2011.15
|
9 |
ZHAO Q, ZHANG L. Temporal and spatial features of single-trial EEG for brain-computer interface [EB/OL]. [2023-10-01]. https://doi.org/10.1155/2007/37695.
|
10 |
MOHANTY R, SETHARES W A, NAIR V A, et al Rethinking measures of functional connectivity via feature extraction[J]. Scientific Reports, 2020, 10 (1): 1298
doi: 10.1038/s41598-020-57915-w
|
11 |
SALIS C I, MALISSOYAS A E, BIZOPOULOS P A, et al. Denoising simulated EEG signals: a comparative study of EMD, wavelet transform and Kalman filter [C]// 13th IEEE International Conference on BioInformatics and BioEngineering . Los Alamitos: IEEE, 2013: 1-4.
|
12 |
ZHANG H, ZHAO M, WEI C, et al EEGdenoisenet: a benchmark dataset for deep learning solutions of EEG denoising[J]. Journal of Neural Engineering, 2021, 18 (5): 056057
doi: 10.1088/1741-2552/ac2bf8
|
13 |
BROPHY E, REDMOND P, FLEURY A, et al Denoising EEG signals for real-world BCI applications using GANs[J]. Frontiers in Neuroergonomics, 2022, 2: 44
|
14 |
AN Y, LAM H K, LING S H Auto-denoising for EEG signals using generative adversarial network[J]. Sensors, 2022, 22 (5): 1750
doi: 10.3390/s22051750
|
15 |
MASHHADI N, KHUZANI A Z, HEIDARI M, et al. Deep learning denoising for EOG artifacts removal from EEG signals [C]// IEEE Global Humanitarian Technology Conference . Seattle: IEEE, 2020: 1-6.
|
16 |
SAWANGJAI P, TRAKULRUANGROJ M, BOONNAG C, et al EEGANet: removal of ocular artifacts from the EEG signal using generative adversarial networks[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26 (10): 4913- 4924
|
17 |
ZHANG H, WEI C, ZHAO M, et al. A novel convolutional neural network model to remove muscle artifacts from EEG [C]// IEEE International Conference on Acoustics, Speech and Signal Processing . Toronto: IEEE, 2021: 1265-1269.
|
18 |
SUN W, SU Y, WU X, et al A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals[J]. Neurocomputing, 2020, 404: 108- 121
doi: 10.1016/j.neucom.2020.04.029
|
19 |
HARTMANN K G, SCHIRRMEISTER R T, BALL T. EEG-GAN: generative adversarial networks for electroencephalograhic (EEG) brain signals [EB/OL]. (2018-06-05)[2023-10-01]. https://arxiv.org/pdf/1905.04149.
|
20 |
CORLEY I A, HUANG Y. Deep EEG super-resolution: upsampling EEG spatial resolution with generative adversarial networks [C]// IEEE EMBS International Conference on Biomedical and Health Informatics . Las Vegas: IEEE, 2018: 100-103.
|
21 |
LUO T, FAN Y, CHEN L, et al EEG signal reconstruction using a generative adversarial network with Wasserstein distance and temporal-spatial-frequency loss[J]. Frontiers in Neuroinformatics, 2020, 14: 15
doi: 10.3389/fninf.2020.00015
|
22 |
ANTONIADES A, SPYROU L, MARTIN-LOPEZ D, et al Deep neural architectures for mapping scalp to intracranial EEG[J]. International Journal of Neural Systems, 2018, 28 (8): 1850009
doi: 10.1142/S0129065718500090
|
23 |
HU M, CHEN J, JIANG S, et al E2SGAN: EEG-to-SEEG translation with generative adversarial networks[J]. Frontiers in Neuroscience, 2022, 16: 971829
doi: 10.3389/fnins.2022.971829
|
24 |
TSIOURIS Κ Μ, PEZOULAS V C, ZERVAKIS M, et al A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals[J]. Computers in Biology and Medicine, 2018, 99: 24- 37
doi: 10.1016/j.compbiomed.2018.05.019
|
25 |
EL-FIQI H, KASMARIK K, BEZERIANOS A, et al. Gate-layer autoencoders with application to incomplete EEG signal recovery [C]// International Joint Conference on Neural Networks . Budapest: IEEE, 2019: 1-8.
|
26 |
AL-MARRIDI A Z, MOHAMED A, ERBAD A. Convolutional auto-encoder approach for EEG compression and reconstruction in m-health systems [C]// 14th International Wireless Communications and Mobile Computing Conference . Chongqing: IEEE, 2018: 370-375.
|
27 |
JIAO Z, YOU H, YANG F, et al. Decoding EEG by visual guided deep neural networks [C]// International Joint Conferences on Artificial Intelligence . Macao: IEEE, 2019: 1387-1393.
|
28 |
YAO Y, PLESTED J, GEDEON T. Deep feature learning and visualization for EEG recording using autoencoders [C]// 25th International Conference on Neural Information Processing . Siem Reap: Springer, 2018: 554-566.
|
29 |
BASHIVAN P, RISH I, YEASIN M, et al. Learning representations from EEG with deep recurrent-convolutional neural networks [EB/OL]. (2016-02-29) [2023-10-01]. https://arxiv.org/pdf/1511.06448.
|
30 |
YU M, SUN Y, ZHU B, et al. Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using EEG [J]. Neurocomputing , 2020, 378: 270-282.
|
31 |
PRASANTH T, THOMAS J, YUVARAJ R, et al. Deep learning for interictal epileptiform spike detection from scalp EEG frequency sub bands [C]// 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society . Montréal: IEEE, 2020: 3703-3706.
|
32 |
SHEN F, PENG Y, KONG W, et al. Multi-scale frequency bands ensemble learning for EEG-based emotion recognition [EB/OL]. (2021-02-10)[2023-10-01].https://www.mdpi.com/1424-8220/21/4/1262.
|
33 |
MIAO M, ZHENG L, XU B, et al. A multiple frequency bands parallel spatial–temporal 3D deep residual learning framework for EEG-based emotion recognition [EB/OL]. (2022-09-18) [2023-10-01]. https://www.sciencedirect.com/science/article/abs/pii/S174680942200595X.
|
34 |
YAO Y, JP A, TG A. Information-preserving feature filter for short-term EEG signals [J]. Neurocomputing , 2020, 408: 91-99.
|
35 |
MIAO M, HU W, YIN H, et al. Spatial-frequency feature learning and classification of motor imagery EEG based on deep convolution neural network [EB/OL]. (2020-07-20)[2023-10-01]. https://www.hindawi.com/journals/cmmm/2020/1981728/.
|
36 |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EE-GNet: a compact convolutional network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2018, 15 (5): 056013.1- 056013.17
|
37 |
ZHAO D, TANG F, SI B, et al Learning joint space-time-frequency features for EEG decoding on small labeled data[J]. Neural Networks, 2019, 114: 67- 77
doi: 10.1016/j.neunet.2019.02.009
|
38 |
WANG J, LIANG S, HE D, et al. A sequential graph convolutional network with frequency-domain complex network of EEG signals for epilepsy detection [C]// IEEE International Conference on Bioinformatics and Bio-medicine . Seoul: IEEE, 2020.
|
39 |
ZHANG X, LU D, SHEN J, et al. Spatial-temporal joint optimization network on covariance manifolds of electroencephalography for fatigue detection [C]// IEEE International Conference on Bioinformatics and Biomedicine . Seoul: IEEE, 2020: 893-900.
|
40 |
FANG Z, WANG W, REN S, et al. Learning regional attention convolutional neural network for motion intention recognition based on EEG data [C]// 29th International Conference on International Joint Conferences on Artificial Intelligence . Yokohama: IEEE, 2021: 1570-1576.
|
41 |
ZHONG P, WANG D, MIAO C EEG-based emotion recognition using regularized graph neural networks[J]. IEEE Transactions on Affective Computing, 2020, 13 (3): 1290- 1301
|
42 |
SCHMIDT L A, TRAINOR L J Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions[J]. Cognition and Emotion, 2001, 15 (4): 487- 500
doi: 10.1080/02699930126048
|
43 |
LI Y, ZHENG W, ZONG Y, et al A bi-hemisphere domain adversarial neural network model for EEG emotion recognition[J]. IEEE Transactions on Affective Computing, 2018, 12 (2): 494- 504
|
44 |
SONG T, LIU S, ZHENG W, et al. Instance-adaptive graph for EEG emotion recognition [C]// AAAI Conference on Artificial Intelligence . New York: AAAI, 2020: 2701-2708.
|
45 |
LI R, WANG Y, LU B L. A multi-domain adaptive graph convolutional network for EEG-based emotion recognition [C]// 29th ACM International Conference on Multimedia . Chengdu: ACM, 2021: 5565-5573.
|
46 |
LI A, HUYNH C, FITZGERALD Z, et al Neural fragility as an EEG marker of the seizure onset zone[J]. Nature Neuroscience, 2021, 24 (10): 1465- 1474
doi: 10.1038/s41593-021-00901-w
|
47 |
GUNNARSDOTTIR K M, LI A, SMITH R J, et al Source-sink connectivity: a novel interictal EEG marker for seizure localization[J]. Brain, 2022, 145 (11): 3901- 3915
doi: 10.1093/brain/awac300
|
48 |
KOSTAS D, AROCA-OUELLETTE S, RUDZICZ F BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data[J]. Frontiers in Human Neuroscience, 2021, 15: 653659
doi: 10.3389/fnhum.2021.653659
|
49 |
DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding [EB/OL].(2019-05-24)[2023-10-01].https://arxiv.org/pdf/1810.04805.
|
50 |
JIA Z, LIM Y, WANG J, et al Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1977- 1986
doi: 10.1109/TNSRE.2021.3110665
|
51 |
LI Y, CHEN J, LI F, et al. Gmss: graph-based multi-task self-supervised learning for EEG emotion recognition [J]. IEEE Transactions on Affective Computing , 2022, 14(3): 2512-2525.
|
52 |
KUMAR V, REDDY L, SHARMA S K, et al. mulEEG: a multi-view representation learning on EEG signals [C]// Medical Image Computing and Computer Assisted Intervention. Singapore: Springer, 2022: 398-407.
|
53 |
MIKKELSEN K B, KIDMOSE P, HANSEN L K On the key hole hypothesis: high mutual information between ear and scalp EEG[J]. Frontiers in Human Neuroscience, 2017, 11 (341): 115
|
54 |
ANANDAKUMAR M, PRADEEPKUMAR J, KAPPEL S L, et al. A knowledge distillation framework for enhancing ear-EEG based sleep staging with scalp-EEG data [EB/OL]. (2022-10-27) [2023-10-01]. https://arxiv.org/pdf/2211.02638.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|