计算机技术 |
|
|
|
|
基于多头自注意力的复杂背景船舶检测算法 |
于楠晶1( ),范晓飚1,邓天民2,*( ),冒国韬2 |
1. 重庆交通大学 航运与船舶工程学院,重庆 400074 2. 重庆交通大学 交通运输学院,重庆 400074 |
|
Ship detection algorithm in complex backgrounds via multi-head self-attention |
Nan-jing YU1( ),Xiao-biao FAN1,Tian-min DENG2,*( ),Guo-tao MAO2 |
1. School of Shipping and Naval Architecture, Chongqing Jiaotong University, Chongqing 400074, China 2. College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China |
引用本文:
于楠晶,范晓飚,邓天民,冒国韬. 基于多头自注意力的复杂背景船舶检测算法[J]. 浙江大学学报(工学版), 2022, 56(12): 2392-2402.
Nan-jing YU,Xiao-biao FAN,Tian-min DENG,Guo-tao MAO. Ship detection algorithm in complex backgrounds via multi-head self-attention. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2392-2402.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.008
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2392
|
1 |
ZHANG T W, ZHANG X L, SHI J, et al Depthwise separable convolution neural network for high-speed SAR ship detection[J]. Remote Sensing, 2019, 11 (21): 2483
doi: 10.3390/rs11212483
|
2 |
ZHANG T W, ZHANG X L Injection of traditional hand-crafted features into modern CNN-based models for SAR ship classification: what, why, where, and how[J]. Remote Sensing, 2021, 13 (11): 2091
doi: 10.3390/rs13112091
|
3 |
徐诚极, 王晓峰, 杨亚东 Attention-YOLO: 引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55 (6): 13- 23 XU Cheng-ji, WANG Xiao-feng, YANG Ya-dong Attention-YOLO: YOLO detection algorithm that introduces attention mechanism[J]. Computer Engineering and Applications, 2019, 55 (6): 13- 23
|
4 |
OKSUZ K, CAM B C, KALKAN S, et al Imbalance problems in object detection: a review[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2021, 43 (10): 3388- 3415
doi: 10.1109/TPAMI.2020.2981890
|
5 |
齐亮, 李邦昱, 陈连凯 基于改进的Faster R-CNN船舶目标检测算法[J]. 中国造船, 2020, 61 (Suppl.1): 40- 51 QI Liang, LI Bang-yu, CHEN Lian-kai Ship target detection algorithm based on improved Fast R-CNN[J]. Shipbuilding of China, 2020, 61 (Suppl.1): 40- 51
doi: 10.3969/j.issn.1000-4882.2020.z1.006
|
6 |
汤丽丹. 基于图像的无人船目标检测研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. TANG Li-dan. Research on object detection of USV based on images [D]. Harbin: Harbin Institute of Technology, 2018.
|
7 |
SHAO Z, WANG L, WANG Z, et al Saliency-aware convolution neural network for ship detection in surveillance video[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30 (3): 781- 794
doi: 10.1109/TCSVT.2019.2897980
|
8 |
LI H, DENG L B, YANG C, et al Enhanced YOLO v3 tiny network for real-time ship detection from visual image[J]. IEEE Access, 2021, 9: 16692- 16706
doi: 10.1109/ACCESS.2021.3053956
|
9 |
甘兴旺, 魏汉迪, 肖龙飞, 等 基于视觉的船舶环境感知数据融合算法研究[J]. 中国造船, 2021, 62 (2): 201- 210 GAN Xing-wang, WEI Han-di, XIAO Long-fei, et al Research on vision-based data fusion algorithm for environment perception of ships[J]. Shipbuilding of China, 2021, 62 (2): 201- 210
doi: 10.3969/j.issn.1000-4882.2021.02.018
|
10 |
FENG Y C, DIAO W H, SUN X, et al Towards automated ship detection and category recognition from high-resolution aerial images[J]. Remote Sensing, 2019, 11 (16): 1901
doi: 10.3390/rs11161901
|
11 |
KIM M, JEONG J, KIM S ECAP-YOLO: efficient channel attention pyramid YOLO for small object detection in aerial image[J]. Remote Sensing, 2021, 13 (23): 4851
doi: 10.3390/rs13234851
|
12 |
CHEN L Q, SHI W X, DENG D X Improved YOLOv3 based on attention mechanism for fast and accurate ship detection in optical remote sensing images[J]. Remote Sensing, 2021, 13 (4): 660
doi: 10.3390/rs13040660
|
13 |
YU J M, ZHOU G Y, ZHOU S B, et al A fast and lightweight detection network for multi-scale SAR ship detection under complex backgrounds[J]. Remote Sensing, 2021, 14 (1): 31
doi: 10.3390/rs14010031
|
14 |
LIN Z H, FENG M W, NOGUEIRA C, et al. A structured self-attentive sentence embedding [EB/OL]. [2021-09-17]. https://arxiv.org/abs/1703.03130.pdf.
|
15 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017: 5998-6008.
|
16 |
SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition [C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 16514-16524.
|
17 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 937-944.
|
18 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
|
19 |
ZHANG Y, SHENG W, JIANG J, et al Priority branches for ship detection in optical remote sensing images[J]. Remote Sensing, 2020, 12 (7): 1196
|
20 |
TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10781-10790.
|
21 |
SHAO Z F, WU W J, WANG Z Y, et al SeaShips: a large-scale precisely annotated dataset for ship detection[J]. IEEE Transactions on Multimedia, 2018, 20 (10): 2593- 2604
doi: 10.1109/TMM.2018.2865686
|
22 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12993-13000.
|
23 |
赵玉蓉, 郭会明, 焦函, 等 融合混合域注意力的YOLOv4在船舶检测中的应用[J]. 计算机与现代化, 2021, (9): 75- 82 ZHAO Yu-rong, GUO Hui-ming, JIAO Han, et al Application of YOLOv4 with mixed-domain attention in ship detection[J]. Computer and Modernization, 2021, (9): 75- 82
doi: 10.3969/j.issn.1006-2475.2021.09.012
|
24 |
LEI S L, LU D D, QIU X L, et al SRSDD-v1.0: a high-resolution SAR rotation ship detection dataset[J]. Remote Sensing, 2021, 13 (24): 5104
doi: 10.3390/rs13245104
|
25 |
RODGER M, GUIDA R Classification-aided SAR and AIS data fusion for space-based maritime surveillance[J]. Remote Sensing, 2020, 13 (1): 104
doi: 10.3390/rs13010104
|
26 |
LIU J M, CHEN H, WANG Y Multi-source remote sensing image fusion for ship target detection and recognition[J]. Remote Sensing, 2021, 13 (23): 4852
doi: 10.3390/rs13234852
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|