计算机技术 |
|
|
|
|
基于通道可靠性和异常抑制的目标跟踪算法 |
国强1,2( ),吴天昊1,2,徐伟1,2,KALIUZHNYMykola1,3 |
1. 哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001 2. 先进船舶通信与信息技术工业和信息化部重点实验室,黑龙江 哈尔滨 150001 3. 哈尔科夫国立无线电电子大学,乌克兰 哈尔科夫 61166 |
|
Target tracking algorithm based on channel reliability and aberrance repression |
Qiang GUO1,2( ),Tian-hao WU1,2,Wei XU1,2,Mykola KALIUZHNY1,3 |
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China 2. Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin 150001, China 3. Kharkiv National University of Radio Electronics, Kharkiv 61166, Ukraine |
引用本文:
国强,吴天昊,徐伟,KALIUZHNYMykola. 基于通道可靠性和异常抑制的目标跟踪算法[J]. 浙江大学学报(工学版), 2022, 56(12): 2379-2391.
Qiang GUO,Tian-hao WU,Wei XU,Mykola KALIUZHNY. Target tracking algorithm based on channel reliability and aberrance repression. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2379-2391.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.007
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2379
|
1 |
黄月平, 李小锋, 杨小冈, 等 基于相关滤波的视觉目标跟踪算法新进展[J]. 系统工程与电子技术, 2021, 43 (8): 2051- 2065 HUANG Yue-ping, LI Xiao-feng, YANG Xiao-gang, et al Advances in visual object tracking algorithm based on correlation filter[J]. Systems Engineering and Electronics, 2021, 43 (8): 2051- 2065
doi: 10.12305/j.issn.1001-506X.2021.08.05
|
2 |
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters [C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 2544-2550.
|
3 |
HENRIQUES J F, CASEIRO R, MARTINS P, et al High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596
doi: 10.1109/TPAMI.2014.2345390
|
4 |
DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking [C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1090-1097.
|
5 |
WANG N Y, SHI J P, YEUNG D Y, et al. Understanding and diagnosing visual tracking systems [C]// 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 3101-3109.
|
6 |
汤张泳, 吴小俊, 朱学峰 多空间分辨率自适应特征融合的相关滤波目标跟踪算法[J]. 模式识别与人工智能, 2020, 33 (1): 66- 74 TANG Zhang-yong, WU Xiao-jun, ZHU Xue-feng Object tracking with multi-spatial resolutions and adaptive feature fusion based on correlation filters[J]. Pattern Recognition and Artifical Intelligence, 2020, 33 (1): 66- 74
doi: 10.16451/j.cnki.issn1003-6059.202001008
|
7 |
熊昌镇, 王润玲, 邹建成 基于多高斯相关滤波的实时跟踪算法[J]. 浙江大学学报:工学版, 2019, 53 (8): 1488- 1495 XIONG Chang-zhen, WANG Run-ling, ZOU Jian-cheng Real-time tracking algorithm based on multiple Gaussian-distirbution correlation filters[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1488- 1495
|
8 |
GALOOGAHI H K, FAGG A, LUCEY S. Learning backg- round-aware correlation filters for visual tracking [C]// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1144-1152.
|
9 |
DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking [C]// 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 4310-4318.
|
10 |
LI F, TIAN C, ZUO W M, et al. Learning spatial-temporal regularized correlation filters for visual tracking [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4904-4913.
|
11 |
尹明锋, 薄煜明, 朱建良, 等. 基于通道可靠性的多尺度背景感知相关滤波跟踪算法[J]. 光学学报. 2019, 39(5): 0515002. YIN Ming-feng, BO Yu-ming, ZHU Jian-liang, et al. Multi-scale context-aware correlation filter tracking algorithm based on channel reliability [J]. Acta Optica Sinica, 2019, 39(5): 0515002.
|
12 |
LU X K, MA C, NI B B, et al Adaptive region proposal with channel regularization for robust object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31 (4): 1268- 1282
doi: 10.1109/TCSVT.2019.2944654
|
13 |
XU T Y , FENG Z H, WU X J, et al. Joint group feature selection and discriminative filter learning for robust visual obj-ect tracking [C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 7950-7960.
|
14 |
YE J J, FU C H, LIN F L, et al Multi-regularized correlation filter for UAV tracking and self-localization[J]. IEEE Transactions on Industrial Electronics, 2021, 6004- 6014
|
15 |
WANG M M, LIU Y, HUANG Z Y. Large margin object tracking with circulant feature maps [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4800-4808.
|
16 |
HUANG Z Y, FU C H, LI Y M, et al. Learning aberrance repressed correlation filters for real-time UAV tracking [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 2891-2900.
|
17 |
LI Y M, FU C H, DING F Q, et al. AutoTrack: towards high-performance visual tracking for UAV with automatic spatio-temporal regularization [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11920-11929.
|
18 |
姜文涛, 刘晓璇, 涂潮, 等 空间异常适应性的目标跟踪[J]. 模式识别与人工智能, 2021, 34 (5): 473- 484 JIANG Wen-tao, LIU Xiao-xuan, TU Chao, et al Spatially abnormal adaptive target tracking[J]. Pattern Recognition and Artificial Intelligence, 2021, 34 (5): 473- 484
doi: 10.16451/j.cnki.issn1003-6059.202105010
|
19 |
BOYD S, PARIKH N, CHU E, et al Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Leaning, 2010, 3 (1): 1- 122
doi: 10.1561/2200000016
|
20 |
WU Y, LIM J, YANG M H Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848
doi: 10.1109/TPAMI.2014.2388226
|
21 |
LIANG P P, BLASCH E, LING H B. Encoding color info- rmation for visual tracking: algorithms and benchmark [J]. IEEE Transactions on Image Processing, 2015, 24(12): 5630-5644.
|
22 |
MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking [C]// 2016 European Conference on Computer Vision. Amsterdam: Springer, 2016: 445–461.
|
23 |
MA C, HUANG J B, YANG X, et al. Hierarchical convolutional features for visual tracking [C]// 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 3074-3082.
|
24 |
QI Y, ZHANG S, QIN L, et al. Hedged deep tracking [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4303-4311.
|
25 |
DANELLJAN M, HÄGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking [C]// 2015 IEEE International Conference on Computer Vision Workshop. Santiago: IEEE, 2015: 621-629.
|
26 |
DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6931-6939.
|
27 |
DANELLJAN M, HÄGER G, KHAN F S, et al. Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas : IEEE, 2016: 1430-1438.
|
28 |
MA C, YANG X K, ZAHNG C Y, et al. Long-term correlation tracking [C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 5388-5396.
|
29 |
MA H Y, ACTON S T, LIN Z L SITUP: scale invariant tracking using average peak-to-correlation energy[J]. IEEE Transactions on Image Processing, 2020, 29: 3546- 3557
doi: 10.1109/TIP.2019.2962694
|
30 |
MA H Y, LIN Z L, ACTON S T FAST: fast and accurate scale estimation for tracking[J]. IEEE Signal Processing Letters, 2020, 27: 161- 165
doi: 10.1109/LSP.2019.2963147
|
31 |
FU C H, XU J T, LIN F L, et al Object saliency-aware dual regularized correlation filter for real-time aerial tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58 (12): 8940- 8951
doi: 10.1109/TGRS.2020.2992301
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|