| 计算机技术 |
|
|
|
|
| 基于多尺度特征增强的航拍小目标检测算法 |
肖剑1( ),何昕泽1,程鸿亮1,杨小苑1,胡欣2,*( ) |
1. 长安大学 电子与控制工程学院,陕西 西安 710064 2. 长安大学 能源与电气工程学院,陕西 西安 710064 |
|
| Aerial small target detection algorithm based on multi-scale feature enhancement |
Jian XIAO1( ),Xinze HE1,Hongliang CHENG1,Xiaoyuan YANG1,Xin HU2,*( ) |
1. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China 2. School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China |
引用本文:
肖剑,何昕泽,程鸿亮,杨小苑,胡欣. 基于多尺度特征增强的航拍小目标检测算法[J]. 浙江大学学报(工学版), 2026, 60(1): 19-31.
Jian XIAO,Xinze HE,Hongliang CHENG,Xiaoyuan YANG,Xin HU. Aerial small target detection algorithm based on multi-scale feature enhancement. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 19-31.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.002
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I1/19
|
| 17 |
ZHANG H, XU C, ZHANG S J. Inner-IoU: more effective intersection over union loss with auxiliary bounding box [EB/OL]. (2023−11−14) [2024−11−20]. https://arxiv.org/abs/2311.02877.
|
| 18 |
TIAN Z, SHEN C, CHEN H, et al FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (4): 1922- 1933
|
| 19 |
DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 213−226.
|
| 20 |
YU W, YANG T, CHEN C. Towards resolving the challenge of long-tail distribution in UAV images for object detection [C]// Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 3257−3266.
|
| 21 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 7464−7475.
|
| 22 |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information [C]// European Conference on Computer Vision. Milan: Springer, 2025: 1−21.
|
| 23 |
SELVARAJU R R, COGSWELL M, DAS A, et al Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128 (2): 336- 359
doi: 10.1007/s11263-019-01228-7
|
| 24 |
XIA G S, BAI X, DING J, et al. DOTA: a large- scale dataset for object detection in aerial images [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3974−3983.
|
| 1 |
ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 2778−2788.
|
| 2 |
LUO X, WU Y, WANG F Target detection method of UAV aerial imagery based on improved YOLOv5[J]. Remote Sensing, 2022, 14 (19): 5063
doi: 10.3390/rs14195063
|
| 3 |
宋耀莲, 王粲, 李大焱, 等 基于改进YOLOv5s的无人机小目标检测算法[J]. 浙江大学学报: 工学版, 2024, 58 (12): 2417- 2426 SONG Yaolian, WANG Can, LI Dayan, et al UAV small target detection algorithm based on improved YOLOv5s[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (12): 2417- 2426
|
| 25 |
LI K, WAN G, CHENG G, et al Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296- 307
|
| 4 |
邓天民, 余洋, 陈月田, 等. 基于自适应复合卷积的航拍小目标检测算法[J/OL]. 北京航空航天大学学报, 2024: 1–14. (2024−06−19) [2024−11−19]. https://doi.org/10.13700/j.bh.100-5965.2024.0135. DENG Tianmin, YU Yang, CHEN Yuetian, et al. Small object detection algorithm for aerial photography based on adaptive compound convolution [J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2024: 1–14. (2024−06−19) [2024−11−19]. https://doi.org/10.13700/j.bh.100-5965.2024.0135.
|
| 5 |
CAO J, BAO W, SHANG H, et al GCL-YOLO: a GhostConv-based lightweight YOLO network for UAV small object detection[J]. Remote Sensing, 2023, 15 (20): 4932
doi: 10.3390/rs15204932
|
| 6 |
WANG H, LIU C, CAI Y, et al YOLOv8-QSD: an improved small object detection algorithm for autonomous vehicles based on YOLOv8[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2513916
|
| 7 |
FENG F, HU Y, LI W, et al Improved YOLOv8 algorithms for small object detection in aerial imagery[J]. Journal of King Saud University-Computer and Information Sciences, 2024, 36 (6): 102113
doi: 10.1016/j.jksuci.2024.102113
|
| 8 |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: improving object detection with one line of code [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5562−5570.
|
| 9 |
CHEN J, KAO SH, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 12021−12031.
|
| 10 |
YANG B, BENDER G, LE Q V, et al. CondConv: conditionally parameterized convolutions for efficient inference [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: NeurIPS Foundation, 2020: 1296−1307.
|
| 11 |
CHEN Z, HE Z, LU Z M DEA-net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing, 2024, 33: 1002- 1015
doi: 10.1109/TIP.2024.3354108
|
| 12 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936−944.
|
| 13 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759−8768.
|
| 14 |
SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects [C]// Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Grenoble: Springer, 2023: 443−459.
|
| 15 |
CUI Y, REN W, KNOLL A Omni-kernel network for image restoration[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38 (2): 1426- 1434
doi: 10.1609/aaai.v38i2.27907
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|