机械工程 |
|
|
|
|
基于改进YOLOv8-Seg模型的生物打印机产物均一性评估 |
曹铭( ),段武峰,马梦骁,艾凡荣,周奎*( ) |
南昌大学 先进制造学院,江西 南昌 330031 |
|
Uniformity evaluation of bio-printer based on improved YOLOv8-Seg model |
Ming CAO( ),Wufeng DUAN,Mengxiao MA,Fanrong AI,Kui ZHOU*( ) |
School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China |
引用本文:
曹铭,段武峰,马梦骁,艾凡荣,周奎. 基于改进YOLOv8-Seg模型的生物打印机产物均一性评估[J]. 浙江大学学报(工学版), 2025, 59(6): 1277-1283.
Ming CAO,Wufeng DUAN,Mengxiao MA,Fanrong AI,Kui ZHOU. Uniformity evaluation of bio-printer based on improved YOLOv8-Seg model. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1277-1283.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.018
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1277
|
1 |
FANG Y C, GUO Y Z, LIU T K, et al Advances in 3D Bioprinting[J]. Chinese Journal of Mechanical Engineering, 2022, 1 (1): 100011
|
2 |
鞠尔男, 武力, 李欣芯, 等 生物医疗领域三维打印的研究与应用[J]. 中国组织工程研究, 2018, 22 (30): 4906- 4912 JU Ernan, WU Li, LI Xinxin, et al Review on three-dimensional printing in the biomedical field[J]. Chinese Journal of Tissue Engineering Research, 2018, 22 (30): 4906- 4912
doi: 10.3969/j.issn.2095-4344.0992
|
3 |
DEY M, OZBOLAT I T 3D bioprinting of cells, tissues and organs[J]. Scientific Reports, 2020, 10 (1): 14023
doi: 10.1038/s41598-020-70086-y
|
4 |
MATAI I, KAUR G, SEYEDSALEHI A, et al Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomaterials, 2020, 226: 119536
doi: 10.1016/j.biomaterials.2019.119536
|
5 |
NG W L, CHAN A, ONG Y S, et al Deep learning for fabrication and maturation of 3D bioprinted tissues and organs[J]. Virtual and Physical Prototyping, 2020, 15 (3): 340- 358
|
6 |
MALEKPOUR A, CHEN X Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views[J]. Journal of Functional Biomaterials, 2022, 13 (2): 40
|
7 |
SALEHI A W, KHAN S, GUPTA G, et al A study of CNN and transfer learning in medical imaging: advantages, challenges, future scope[J]. Sustainability, 2023, 15 (7): 5930
doi: 10.3390/su15075930
|
8 |
JIANG P, ERGU D, LIU F, et al A review of yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066- 1073
doi: 10.1016/j.procs.2022.01.135
|
9 |
DIWAN T, ANIRUDH G, TEMBHURNE J V Object detection using YOLO: challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications, 2023, 82 (6): 9243- 9275
doi: 10.1007/s11042-022-13644-y
|
10 |
HUSSAIN M YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11 (7): 677
doi: 10.3390/machines11070677
|
11 |
HAO S, ZHOU Y, GUO Y A brief survey on semantic segmentation with deep learning[J]. Neurocomputing, 2020, 406: 302- 321
doi: 10.1016/j.neucom.2019.11.118
|
12 |
MO Y, WU Y, YANG X, et al Review the state-of-the-art technologies of semantic segmentation based on deep learning[J]. Neurocomputing, 2022, 493: 626- 646
|
13 |
LI X, JIAO H, WANG Y Edge detection algorithm of cancer image based on deep learning[J]. Bioengineered, 2020, 11 (1): 693- 707
|
14 |
PARAK A, PRADEEP P, DU TOIT L C, et al Functionalizing bioinks for 3D bioprinting applications[J]. Drug Discovery Today, 2019, 24 (1): 198- 205
|
15 |
许杰, 关一民 基于热泡喷墨技术制备均匀细胞球的创新方法[J]. 科技通报, 2024, 40 (4): 33- 38 XU Jie, GUAN Yimin Innovative method of manufacturing uniform cell spheroids based on thermal inkjet technology[J]. Bulletin of Science and Technology, 2024, 40 (4): 33- 38
|
16 |
ZHENG L, YI J, HE P, et al Improvement of the YOLOv8 model in the optimization of the weed recognition algorithm in cotton field[J]. Plants, 2024, 13 (13): 1843
doi: 10.3390/plants13131843
|
17 |
JING J, LIU S, WANG G, et al Recent advances on image edge detection: a comprehensive review[J]. Neurocomputing, 2022, 503: 259- 271
|
18 |
SUN R, LEI T, CHEN Q, et al Survey of image edge detection[J]. Frontiers in Signal Processing, 2022, 2: 826967
|
19 |
STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: transformer for semantic segmentation [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 7242–7252.
|
20 |
GUO Y, LIU Y, GEORGIOU T, et al A review of semantic segmentation using deep neural networks[J]. International Journal of Multimedia Information Retrieval, 2018, 7 (2): 87- 93
|
21 |
ZHANG M, LI X, XU M, et al Automated semantic segmentation of red blood cells for sickle cell disease[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (11): 3095- 3102
|
22 |
BAI R, WANG M, ZHANG Z, et al Automated construction site monitoring based on improved YOLOv8-seg instance segmentation algorithm[J]. IEEE Access, 2023, 11: 139082- 139096
|
23 |
YUE X, QI K, NA X, et al Improved YOLOv8-seg network for instance segmentation of healthy and diseased tomato plants in the growth stage[J]. Agriculture, 2023, 13 (8): 1643
|
24 |
ZHANG H, MENG C, BAI X, et al Rock-ring detection accuracy improvement in infrared satellite image with sub-pixel edge detection[J]. IET Image Processing, 2019, 13 (5): 729- 735
|
25 |
WU Y, HAN Q, JIN Q, et al LCA-YOLOv8-seg: an improved lightweight YOLOv8-seg for real-time pixel-level crack detection of dams and bridges[J]. Applied Sciences, 2023, 13 (19): 10583
|
26 |
BAYRAMOĞLU Z, UZAR M Performance analysis of rule-based classification and deep learning method for automatic road extraction[J]. International Journal of Engineering and Geosciences, 2023, 8 (1): 83- 97
|
27 |
王富友, 王浦全 3D打印技术在骨关节外科领域的应用与发展[J]. 陆军军医大学学报, 2022, 44 (15): 1508- 1515 WANG Fuyou, WANG Puquan Application and development of 3D printing technology in bone and joint surgery[J]. Journal of Army Medical University, 2022, 44 (15): 1508- 1515
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|