Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (6): 1277-1283    DOI: 10.3785/j.issn.1008-973X.2025.06.018
机械工程     
基于改进YOLOv8-Seg模型的生物打印机产物均一性评估
曹铭(),段武峰,马梦骁,艾凡荣,周奎*()
南昌大学 先进制造学院,江西 南昌 330031
Uniformity evaluation of bio-printer based on improved YOLOv8-Seg model
Ming CAO(),Wufeng DUAN,Mengxiao MA,Fanrong AI,Kui ZHOU*()
School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
 全文: PDF(2227 KB)   HTML
摘要:

目前生物打印机依赖电子显微镜观测打印结果,并通过三点画圆法计算面积评价产物均一性,耗时久、主观性强、与真实情况差异大. 为此,提出基于改进YOLOv8-Seg模型的打印产物轮廓识别. 使用Adam作为优化器并调节原YOLOv8-Seg模型的训练参数,确保模型对打印产物识别的置信度水平大多高于0.94. 训练得到的mAP50达到99.5%,mAP50?90达到98.4%. 采集数据图片中事先放置的500 μm的标度尺,实现对所识别轮廓面积的直接计算,同时结合识别轮廓与圆形相似度的算法,优化打印产物均一性的评估指标. 优化后的算法所识别的轮廓与真实轮廓的差异性小于0.25%. 对不同方法所获得的打印结果的轮廓面积进行变异系数CV处理与圆度分析,结果表明,当CV小于20%,圆度大于0.65时,可认为打印产物均一性良好.

关键词: 生物打印机三点画圆法均一性YOLOv8-Seg模型mAP50mAP50?90变异系数圆度    
Abstract:

The current biological 3D printer relies on electron microscopes to observe printed results and uses the three-point circle method to calculate the area for evaluating the product uniformity. However, this approach has notable issues, including time consumption, subjectivity, and large discrepancies with the real situation. Thus, an improved YOLOv8-Seg model was proposed for contour recognition of the printed products. The Adam optimizer was employed, and the training parameters of the original YOLOv8-Seg model were adjusted to ensure that the model’s confidence level for product recognition was mostly above 0.94. The trained model achieved an mAP50 of 99.5% and an mAP50?90 of 98.4%. Subsequently, data images in which a 500 μm scale bar was pre-placed were used to directly calculate the recognized contour area. Additionally, an algorithm for evaluating the similarity of the recognized contour to a circle was incorporated to optimize the metric for assessing product uniformity. The optimized algorithm showed that the difference between the recognized contour and the real contour was less than 0.25%. Finally, variance coefficient (CV) and circularity analyses were performed on the contour areas obtained by different methods. Results indicated that when the CV was less than 20% and the circularity was greater than 0.65, the printed product could be considered uniform.

Key words: bio-printer    three-point circle method    uniformity    YOLOv8-Seg model    mAP50    mAP50?90    coefficient of variation    circularity
收稿日期: 2024-11-16 出版日期: 2025-05-30
CLC:  TP 391.4  
基金资助: 江西省重点研发计划资助项目(20232BBE50017);江西省自然科技基金资助项目(20232BAB215016).
通讯作者: 周奎     E-mail: caoming@ncu.edu.cn;zhoukui@ncu.edu.cn
作者简介: 曹铭(1986—),男,副教授,博士,从事智能装备、生物3D打印研究. orcid.org/0000-0002-3885-0516. E-mail:caoming@ncu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曹铭
段武峰
马梦骁
艾凡荣
周奎

引用本文:

曹铭,段武峰,马梦骁,艾凡荣,周奎. 基于改进YOLOv8-Seg模型的生物打印机产物均一性评估[J]. 浙江大学学报(工学版), 2025, 59(6): 1277-1283.

Ming CAO,Wufeng DUAN,Mengxiao MA,Fanrong AI,Kui ZHOU. Uniformity evaluation of bio-printer based on improved YOLOv8-Seg model. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1277-1283.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.018        https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1277

图 1  补偿模式与双向补偿模式下打印的结果图
图 2  三点画圆求最小拟合圆的示意图
图 3  YOLOv8-Seg模型图
图 4  二维CNN实现过程图
图 5  改进YOLOv8-Seg模型训练结果图
图 6  打印结果识别与平均置信度图
图 7  补偿打印模式轮廓对比差异显示图
图 8  双向补偿打印模式轮廓对比差异显示图
图 9  识别轮廓面积、圆度与变异系数图
1 FANG Y C, GUO Y Z, LIU T K, et al Advances in 3D Bioprinting[J]. Chinese Journal of Mechanical Engineering, 2022, 1 (1): 100011
2 鞠尔男, 武力, 李欣芯, 等 生物医疗领域三维打印的研究与应用[J]. 中国组织工程研究, 2018, 22 (30): 4906- 4912
JU Ernan, WU Li, LI Xinxin, et al Review on three-dimensional printing in the biomedical field[J]. Chinese Journal of Tissue Engineering Research, 2018, 22 (30): 4906- 4912
doi: 10.3969/j.issn.2095-4344.0992
3 DEY M, OZBOLAT I T 3D bioprinting of cells, tissues and organs[J]. Scientific Reports, 2020, 10 (1): 14023
doi: 10.1038/s41598-020-70086-y
4 MATAI I, KAUR G, SEYEDSALEHI A, et al Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomaterials, 2020, 226: 119536
doi: 10.1016/j.biomaterials.2019.119536
5 NG W L, CHAN A, ONG Y S, et al Deep learning for fabrication and maturation of 3D bioprinted tissues and organs[J]. Virtual and Physical Prototyping, 2020, 15 (3): 340- 358
6 MALEKPOUR A, CHEN X Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views[J]. Journal of Functional Biomaterials, 2022, 13 (2): 40
7 SALEHI A W, KHAN S, GUPTA G, et al A study of CNN and transfer learning in medical imaging: advantages, challenges, future scope[J]. Sustainability, 2023, 15 (7): 5930
doi: 10.3390/su15075930
8 JIANG P, ERGU D, LIU F, et al A review of yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066- 1073
doi: 10.1016/j.procs.2022.01.135
9 DIWAN T, ANIRUDH G, TEMBHURNE J V Object detection using YOLO: challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications, 2023, 82 (6): 9243- 9275
doi: 10.1007/s11042-022-13644-y
10 HUSSAIN M YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11 (7): 677
doi: 10.3390/machines11070677
11 HAO S, ZHOU Y, GUO Y A brief survey on semantic segmentation with deep learning[J]. Neurocomputing, 2020, 406: 302- 321
doi: 10.1016/j.neucom.2019.11.118
12 MO Y, WU Y, YANG X, et al Review the state-of-the-art technologies of semantic segmentation based on deep learning[J]. Neurocomputing, 2022, 493: 626- 646
13 LI X, JIAO H, WANG Y Edge detection algorithm of cancer image based on deep learning[J]. Bioengineered, 2020, 11 (1): 693- 707
14 PARAK A, PRADEEP P, DU TOIT L C, et al Functionalizing bioinks for 3D bioprinting applications[J]. Drug Discovery Today, 2019, 24 (1): 198- 205
15 许杰, 关一民 基于热泡喷墨技术制备均匀细胞球的创新方法[J]. 科技通报, 2024, 40 (4): 33- 38
XU Jie, GUAN Yimin Innovative method of manufacturing uniform cell spheroids based on thermal inkjet technology[J]. Bulletin of Science and Technology, 2024, 40 (4): 33- 38
16 ZHENG L, YI J, HE P, et al Improvement of the YOLOv8 model in the optimization of the weed recognition algorithm in cotton field[J]. Plants, 2024, 13 (13): 1843
doi: 10.3390/plants13131843
17 JING J, LIU S, WANG G, et al Recent advances on image edge detection: a comprehensive review[J]. Neurocomputing, 2022, 503: 259- 271
18 SUN R, LEI T, CHEN Q, et al Survey of image edge detection[J]. Frontiers in Signal Processing, 2022, 2: 826967
19 STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: transformer for semantic segmentation [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 7242–7252.
20 GUO Y, LIU Y, GEORGIOU T, et al A review of semantic segmentation using deep neural networks[J]. International Journal of Multimedia Information Retrieval, 2018, 7 (2): 87- 93
21 ZHANG M, LI X, XU M, et al Automated semantic segmentation of red blood cells for sickle cell disease[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (11): 3095- 3102
22 BAI R, WANG M, ZHANG Z, et al Automated construction site monitoring based on improved YOLOv8-seg instance segmentation algorithm[J]. IEEE Access, 2023, 11: 139082- 139096
23 YUE X, QI K, NA X, et al Improved YOLOv8-seg network for instance segmentation of healthy and diseased tomato plants in the growth stage[J]. Agriculture, 2023, 13 (8): 1643
24 ZHANG H, MENG C, BAI X, et al Rock-ring detection accuracy improvement in infrared satellite image with sub-pixel edge detection[J]. IET Image Processing, 2019, 13 (5): 729- 735
25 WU Y, HAN Q, JIN Q, et al LCA-YOLOv8-seg: an improved lightweight YOLOv8-seg for real-time pixel-level crack detection of dams and bridges[J]. Applied Sciences, 2023, 13 (19): 10583
26 BAYRAMOĞLU Z, UZAR M Performance analysis of rule-based classification and deep learning method for automatic road extraction[J]. International Journal of Engineering and Geosciences, 2023, 8 (1): 83- 97
27 王富友, 王浦全 3D打印技术在骨关节外科领域的应用与发展[J]. 陆军军医大学学报, 2022, 44 (15): 1508- 1515
WANG Fuyou, WANG Puquan Application and development of 3D printing technology in bone and joint surgery[J]. Journal of Army Medical University, 2022, 44 (15): 1508- 1515
[1] 王震,丁智,张霄,周奇辉,张成全. 考虑椭圆度缺陷的盾构管片结构极限承载性能研究[J]. 浙江大学学报(工学版), 2022, 56(11): 2290-2302.
[2] 贺永,高庆,刘安,孙苗,傅建中. 生物3D打印——从形似到神似[J]. 浙江大学学报(工学版), 2019, 53(3): 407-419.