计算机技术、控制工程、通信技术 |
|
|
|
|
基于Convnextv2与纹理边缘引导的伪装目标检测 |
付家瑞1( ),李兆飞1,2,3,*( ),周豪1,黄惟1 |
1. 四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000 2. 智能感知与控制四川省重点实验室,四川 宜宾 644000 3. 企业信息化与物联网测控技术四川省高校重点实验室,四川 宜宾 644000 |
|
Camouflaged object detection based on Convnextv2 and texture-edge guidance |
Jiarui FU1( ),Zhaofei LI1,2,3,*( ),Hao ZHOU1,Wei HUANG1 |
1. College of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644000, China 2. Intelligent Perception and Control Key Laboratory of Sichuan Province, Yibin 644000, China 3. Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Yibin 644000, China |
引用本文:
付家瑞,李兆飞,周豪,黄惟. 基于Convnextv2与纹理边缘引导的伪装目标检测[J]. 浙江大学学报(工学版), 2025, 59(8): 1718-1726.
Jiarui FU,Zhaofei LI,Hao ZHOU,Wei HUANG. Camouflaged object detection based on Convnextv2 and texture-edge guidance. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1718-1726.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.019
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1718
|
1 |
张冬冬, 王春平, 付强 伪装目标检测研究进展[J]. 激光杂志, 2024, 45 (3): 1- 13 ZHANG Dongdong, WANG Chunping, FU Qiang Research developments in camouflage object detection[J]. Laser Journal, 2024, 45 (3): 1- 13
|
2 |
SUN Y, CHEN G, ZHOU T, et al. Context-aware cross-level fusion network for camouflaged object detection [EB/OL]. [2025-05-29]. https://arxiv.org/abs/2105.12555.
|
3 |
REN J, HU X, ZHU L, et al Deep texture-aware features for camouflaged object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 33 (3): 1157- 1167
|
4 |
JI G P, FAN D P, CHOU Y C, et al Deep gradient learning for efficient camouflaged object detection[J]. Machine Intelligence Research, 2023, 20 (1): 92- 108
doi: 10.1007/s11633-022-1365-9
|
5 |
SUN Y, WANG S, CHEN C, et al. Boundary-guided camouflaged object detection [C]// International Joint Conference on Artificial Intelligence. Shenzhen: Morgan Kaufmann, 2022: 335-1341.
|
6 |
CHEN Tianrun, ZHU Lanyun, DENG Chaotao, et al. SAM2-Adapter: evaluating and adapting segment anything 2 in downstream tasks: camouflage, shadow, medical image segmentation, and more [EB/OL]. [2024-10-19]. https://arxiv.org/abs/2408.04579.
|
7 |
NIKHILA R, VALENTIN G, HU Y, et al. SAM 2: segment anything in images and videos [EB/OL]. [2024-10-19]. https://arxiv.org/abs/2408.00714.
|
8 |
CHEN G, WANG H, CHEN K, et al A survey of the four pillars for small object detection: multiscale representation, contextual information, super-resolution, and region proposal[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52 (2): 936- 953
|
9 |
LIU Y, LI H, CHENG J, et al MSCAF-net: a general framework for camouflaged object detection via learning multi-scale context-aware features[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (9): 4934- 4947
doi: 10.1109/TCSVT.2023.3245883
|
10 |
WOO S, DEBNATH S, HU R, et al. Convnext v2: co-designing and scaling convnets with masked autoencoders [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 16133-16142.
|
11 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
12 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. [2025-05-29]. https://arxiv.org/abs/2010.11929.
|
13 |
WU Z, SU L, HUANG Q. Cascaded partial decoder for fast and accurate salient object detection [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3907-3916.
|
14 |
ZHAO J X, LIU J J, FAN D P, et al. EGNet: edge guidance network for salient object detection [C]// IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8779-8788.
|
15 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// European Conference on Computer Vision. Munich: Springer, 2018: 3-19.
|
16 |
MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation [C]// International Conference on 3D Vision. California: IEEE, 2016: 565-571.
|
17 |
LE T N, NGUYEN T V, NIE Z, et al Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184: 45- 56
doi: 10.1016/j.cviu.2019.04.006
|
18 |
FAN D P, JI G P, SUN G, et al. Camouflaged object detection [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2777-2787.
|
19 |
LV Y, ZHANG J, DAI Y, et al. Simultaneously localize, segment and rank the camouflaged objects [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 11591-11601.
|
20 |
FAN D P, JI G P, CHENG M M, et al Concealed object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44 (10): 6024- 6042
|
21 |
XING H, GAO S, WANG Y, et al Go closer to see better: camouflaged object detection via object area amplification and figure-ground conversion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (10): 5444- 5457
doi: 10.1109/TCSVT.2023.3255304
|
22 |
JIA Q, YAO S, LIU Y, et al. Segment, magnify and reiterate: detecting camouflaged objects the hard way [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 4713-4722.
|
23 |
SONG Z, KANG X, WEI X, et al Fsnet: focus scanning network for camouflaged object detection[J]. IEEE Transactions on Image Processing, 2023, 32: 2267- 2278
doi: 10.1109/TIP.2023.3266659
|
24 |
HU X, WANG S, QIN X, et al. High-resolution iterative feedback network for camouflaged object detection [C]// AAAI Conference on Artificial Intelligence. Washington: AAAI, 2023, 37(1): 881-889.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|